Approximation in the mean by analytic functions
HTML articles powered by AMS MathViewer
- by Lars Inge Hedberg
- Trans. Amer. Math. Soc. 163 (1972), 157-171
- DOI: https://doi.org/10.1090/S0002-9947-1972-0432886-6
- PDF | Request permission
Abstract:
Let $E$ be a compact set in the plane, let ${L^p}(E)$ have its usual meaning, and let $L_a^p(E)$ be the subspace of functions analytic in the interior of $E$. The problem studied in this paper is whether or not rational functions with poles off $E$ are dense in $L_a^p(E)$ (or in ${L^p}(E)$ in the case when $E$ has no interior). For $1 \leqq p \leqq 2$ the problem has been settled by Bers and Havin. By a method which applies for $1 \leqq p < \infty$ we give new results for $p > 2$ which improve earlier results by Sinanjan. The results are given in terms of capacities.References
- Thomas Bagby, $L_{p}$ approximation by analytic functions, J. Approximation Theory 5 (1972), 401–404. MR 348116, DOI 10.1016/0021-9045(72)90006-8 —, Quasi topologies and rational approximation, J. Functional Analysis (submitted).
- Lipman Bers, An approximation theorem, J. Analyse Math. 14 (1965), 1–4. MR 178287, DOI 10.1007/BF02806376
- James E. Brennan, Invariant subspaces and rational approximation, J. Functional Analysis 7 (1971), 285–310. MR 0423059, DOI 10.1016/0022-1236(71)90036-x
- A. P. Calderon and A. Zygmund, On the existence of certain singular integrals, Acta Math. 88 (1952), 85–139. MR 52553, DOI 10.1007/BF02392130 T. Carleman, Über die Approximation analytischer Funktionen durch lineare Aggregate von vorgegebenen Potenzen, Ark. Mat. Astr. Fys. 17 (1923), 1-30.
- Lennart Carleson, Mergelyan’s theorem on uniform polynomial approximation, Math. Scand. 15 (1964), 167–175. MR 198209, DOI 10.7146/math.scand.a-10741
- Lennart Carleson, Selected problems on exceptional sets, Van Nostrand Mathematical Studies, No. 13, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0225986
- Jacques Deny, Sur la convergence de certaines intégrales de la théorie du potentiel, Arch. Math. (Basel) 5 (1954), 367–370 (French). MR 66513, DOI 10.1007/BF01898378
- Nicolaas du Plessis, A theorem about fractional integrals, Proc. Amer. Math. Soc. 3 (1952), 892–898. MR 51909, DOI 10.1090/S0002-9939-1952-0051909-2
- Bent Fuglede, On generalized potentials of functions in the Lebesgue classes, Math. Scand. 8 (1960), 287–304. MR 159023, DOI 10.7146/math.scand.a-10612
- Theodore W. Gamelin, Uniform algebras, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1969. MR 0410387
- A. A. Gončar, On the uniform approximation of continuous functions by harmonic functions, Izv. Akad. Nauk SSSR Ser. Mat. 27 (1963), 1239–1250 (Russian). MR 0159012
- A. A. Gončar, On the approximation of continuous functions by harmonic functions, Dokl. Akad. Nauk SSSR 154 (1964), 503–506 (Russian). MR 0159173
- A. A. Gončar, On the property of instability of harmonic capacity, Dokl. Akad. Nauk SSSR 165 (1965), 479–481 (Russian). MR 0190366
- V. P. Havin, Approximation by analytic functions in the mean, Dokl. Akad. Nauk SSSR 178 (1968), 1025–1028 (Russian). MR 0224830
- V. G. Maz′ja and V. P. Havin, Approximation in the mean by analytic functions, Vestnik Leningrad. Univ. 23 (1968), no. 13, 62–74 (Russian, with English summary). MR 0235131
- S. Ya. Havinson, Extremal problems for certain classes of analytic functions in finitely connected regions, Amer. Math. Soc. Transl. (2) 5 (1957), 1–33. MR 0083573, DOI 10.1090/trans2/005/01
- Lars Inge Hedberg, Weighted mean approximation in Carathéodory regions, Math. Scand. 23 (1968), 113–122 (1969). MR 257377, DOI 10.7146/math.scand.a-10902
- N. S. Landkof, Osnovy sovremennoĭ teorii potentsiala, Izdat. “Nauka”, Moscow, 1966 (Russian). MR 0214795
- Ju. A. Lysenko and B. M. Pisarevskiĭ, The instability of harmonic capacity and the approximation of continuous functions by harmonic functions, Mat. Sb. (N.S.) 76 (118) (1968), 52–71 (Russian). MR 0234179
- S. N. Mergeljan, On the completeness of systems of analytic functions, Amer. Math. Soc. Transl. (2) 19 (1962), 109–166. MR 0131561
- S. O. Sinanjan, The uniqueness property of analytic functions on closed see without interior points, Sibirsk. Mat. Ž. 6 (1965), 1365–1381 (Russian). MR 0192063
- S. O. Sinanjan, Approximation by analytical functions and polynomials in the mean with respect to the area, Mat. Sb. (N.S.) 69 (111) (1966), 546–578 (Russian). MR 0209491
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- M. Tsuji, Potential theory in modern function theory, Maruzen Co. Ltd., Tokyo, 1959. MR 0114894
- A. G. Vituškin, Analytic capacity of sets in problems of approximation theory, Uspehi Mat. Nauk 22 (1967), no. 6 (138), 141–199 (Russian). MR 0229838
- Hans Wallin, A connection between $\alpha$-capacity and $L^{p}$-classes of differentiable functions, Ark. Mat. 5 (1963/65), 331–341 (1963/65). MR 217326, DOI 10.1007/BF02591134
- Lawrence Zalcmann, Analytic capacity and rational approximation, Lecture Notes in Mathematics, No. 50, Springer-Verlag, Berlin-New York, 1968. MR 0227434
- William P. Ziemer, Extremal length as a capacity, Michigan Math. J. 17 (1970), 117–128. MR 268401
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 163 (1972), 157-171
- MSC: Primary 30A82
- DOI: https://doi.org/10.1090/S0002-9947-1972-0432886-6
- MathSciNet review: 0432886