Entropy-expansive maps
HTML articles powered by AMS MathViewer
- by Rufus Bowen
- Trans. Amer. Math. Soc. 164 (1972), 323-331
- DOI: https://doi.org/10.1090/S0002-9947-1972-0285689-X
- PDF | Request permission
Abstract:
Let $f:X \to X$ be a uniformly continuous map of a metric space. f is called h-expansive if there is an $\varepsilon > 0$ so that the set ${\Phi _\varepsilon }(x) = \{ y:d({f^n}(x),{f^n}(y)) \leqq \varepsilon$ for all $n \geqq 0$} has zero topological entropy for each $x \in X$. For X compact, the topological entropy of such an f is equal to its estimate using $\varepsilon :h(f) = h(f,\varepsilon )$. If X is compact finite dimensional and $\mu$ an invariant Borel measure, then ${h_\mu }(f) = {h_\mu }(f,A)$ for any finite measurable partition A of X into sets of diameter at most $\varepsilon$. A number of examples are given. No diffeomorphism of a compact manifold is known to be not h-expansive.References
- R. L. Adler, A. G. Konheim, and M. H. McAndrew, Topological entropy, Trans. Amer. Math. Soc. 114 (1965), 309–319. MR 175106, DOI 10.1090/S0002-9947-1965-0175106-9
- D. Z. Arov, Calculation of entropy for a class of group endomorphisms, Zap. Meh.-Mat. Fak. Har′kov. Gos. Univ. i Har′kov. Mat. Obšč. (4) 30 (1964), 48–69 (Russian). MR 0213507
- Patrick Billingsley, Ergodic theory and information, John Wiley & Sons, Inc., New York-London-Sydney, 1965. MR 0192027
- Rufus Bowen, Entropy for group endomorphisms and homogeneous spaces, Trans. Amer. Math. Soc. 153 (1971), 401–414. MR 274707, DOI 10.1090/S0002-9947-1971-0274707-X
- Rufus Bowen, Topological entropy and axiom $\textrm {A}$, Global Analysis (Proc. Sympos. Pure Math., Vols. XIV, XV, XVI, Berkeley, Calif., 1968) Amer. Math. Soc., Providence, R.I., 1970, pp. 23–41. MR 0262459
- Rufus Bowen, Periodic points and measures for Axiom $A$ diffeomorphisms, Trans. Amer. Math. Soc. 154 (1971), 377–397. MR 282372, DOI 10.1090/S0002-9947-1971-0282372-0
- E. I. Dinaburg, A correlation between topological entropy and metric entropy, Dokl. Akad. Nauk SSSR 190 (1970), 19–22 (Russian). MR 0255765
- L. Wayne Goodwyn, Topological entropy bounds measure-theoretic entropy, Proc. Amer. Math. Soc. 23 (1969), 679–688. MR 247030, DOI 10.1090/S0002-9939-1969-0247030-3
- Charles Pugh and Michael Shub, The $\Omega$-stability theorem for flows, Invent. Math. 11 (1970), 150–158. MR 287579, DOI 10.1007/BF01404608
- Witold Hurewicz and Henry Wallman, Dimension Theory, Princeton Mathematical Series, vol. 4, Princeton University Press, Princeton, N. J., 1941. MR 0006493
- Harvey B. Keynes and James B. Robertson, Generators for topological entropy and expansiveness, Math. Systems Theory 3 (1969), 51–59. MR 247031, DOI 10.1007/BF01695625 A. Kolmogorov and V. Tihomirov, $\varepsilon$-entropy and $\varepsilon$-capacity of sets in function spaces, Uspehi Mat. Nauk 14 (1959), no. 2 (86), 3-86; English transl., Amer. Math. Soc. Transl. (2) 17 (1961), 277-364. MR 22 #2890; MR 23 #A2031.
- William Parry, Entropy and generators in ergodic theory, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0262464
- Ja. Sinaĭ, On the concept of entropy for a dynamic system, Dokl. Akad. Nauk SSSR 124 (1959), 768–771 (Russian). MR 0103256
- S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 228014, DOI 10.1090/S0002-9904-1967-11798-1
- V. A. Rohlin, Lectures on the entropy theory of transformations with invariant measure, Uspehi Mat. Nauk 22 (1967), no. 5 (137), 3–56 (Russian). MR 0217258
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 164 (1972), 323-331
- MSC: Primary 28.70; Secondary 54.00
- DOI: https://doi.org/10.1090/S0002-9947-1972-0285689-X
- MathSciNet review: 0285689