Quotient sheaves and valuation rings
HTML articles powered by AMS MathViewer
- by Joel Cunningham
- Trans. Amer. Math. Soc. 164 (1972), 227-239
- DOI: https://doi.org/10.1090/S0002-9947-1972-0286845-7
- PDF | Request permission
Abstract:
In this paper a construction of a quotient sheaf of a sheaf of rings is given. This construction is analogous to the Utumi ring of quotients of a ring. For a valuation ring V, a sheaf of rings corresponding to V is introduced and its quotient sheaf is computed. It is shown that this quotient sheaf corresponds to the completion of V in case V is discrete rank one and that V is maximal if and only if its associated sheaf of rings is its own quotient sheaf.References
- Carl Faith, Lectures on injective modules and quotient rings, Lecture Notes in Mathematics, No. 49, Springer-Verlag, Berlin-New York, 1967. MR 0227206, DOI 10.1007/BFb0074319
- Pierre Gabriel, Des catégories abéliennes, Bull. Soc. Math. France 90 (1962), 323–448 (French). MR 232821, DOI 10.24033/bsmf.1583
- Roger Godement, Topologie algébrique et théorie des faisceaux, Publ. Inst. Math. Univ. Strasbourg. No. 13, Hermann, Paris, 1958 (French). MR 0102797
- Alexander Grothendieck, Sur quelques points d’algèbre homologique, Tohoku Math. J. (2) 9 (1957), 119–221 (French). MR 102537, DOI 10.2748/tmj/1178244839 —, Éléments de géométrie algébrique. I. Le langage des schémas, Inst. Hautes Études Sci. Publ. Math. No. 4 (1960), 228 pp. MR 36 #177a.
- Daniel Zelinsky, Linearly compact modules and rings, Amer. J. Math. 75 (1953), 79–90. MR 51832, DOI 10.2307/2372616
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 164 (1972), 227-239
- MSC: Primary 16.90; Secondary 13.00
- DOI: https://doi.org/10.1090/S0002-9947-1972-0286845-7
- MathSciNet review: 0286845