The structure of certain unitary representations of infinite symmetric groups
HTML articles powered by AMS MathViewer
- by Arthur Lieberman
- Trans. Amer. Math. Soc. 164 (1972), 189-198
- DOI: https://doi.org/10.1090/S0002-9947-1972-0286940-2
- PDF | Request permission
Abstract:
Let S be an infinite set, $\beta$ an infinite cardinal number, and ${G_\beta }(S)$ the group of those permutations of S whose support has cardinal number less than $\beta$. If T is any nonempty set, ${S^T}$ is the set of functions from T to S. The canonical representation $\Lambda _\beta ^T$ of ${G_\beta }(S)$ on ${L^2}({S^T})$ is the direct sum of factor representations. Factor representations of types ${{\text {I}}_\infty },{\text {II}_1}$, and ${\text {II}_\infty }$ occur in this decomposition, depending upon S, $\beta$, and T; the type ${\text {II}_1}$ factor representations are quasi-equivalent to the left regular representation. Let ${G_\beta }(S)$ have the topology of pointwise convergence on S. ${G_\beta }(S)$ is a topological group but is not locally compact. Every continuous representation of ${G_\beta }(S)$ is the direct sum of irreducible representations. Let $\Gamma$ be a nontrivial continuous irreducible representation of ${G_\beta }(S)$. Then $\Gamma$ is continuous iff $\Gamma$ is equivalent to a subrepresentation of $\Lambda _\beta ^T$ for some nonempty finite set T iff there is a nonempty finite subset Z of S such that the restriction of $\Gamma$ to the subgroup of those permutations which leave Z pointwise fixed contains the trivial representation of this subgroup.References
- J. Dixmier, Les algĂšbres dâopĂ©rateurs dans lâespace Hilbertien, 2nd ed., Gauthier-Villars, Paris, 1969.
- Jacques Dixmier, Les $C^{\ast }$-algĂšbres et leurs reprĂ©sentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars & Cie, Ăditeur-Imprimeur, Paris, 1964 (French). MR 0171173
- Kurt Gödel, The Consistency of the Continuum Hypothesis, Annals of Mathematics Studies, No. 3, Princeton University Press, Princeton, N. J., 1940. MR 0002514, DOI 10.1515/9781400881635 M. A. NaÄmark, Normed rings, GITTL, Moscow, 1956; English transl., Noordhoff, Groningen, 1959. MR 19, 870; MR 22 #1824.
- G. de B. Robinson, Representation theory of the symmetric group, Mathematical Expositions, No. 12, University of Toronto Press, Toronto, 1961. MR 0125885
- I. E. Segal, The structure of a class of representations of the unitary group on a Hilbert space, Proc. Amer. Math. Soc. 8 (1957), 197â203. MR 84122, DOI 10.1090/S0002-9939-1957-0084122-8
- Elmar Thoma, Die unzerlegbaren, positiv-definiten Klassenfunktionen der abzĂ€hlbar unendlichen, symmetrischen Gruppe, Math. Z. 85 (1964), 40â61 (German). MR 173169, DOI 10.1007/BF01114877
- Hermann Weyl, The classical groups, Princeton Landmarks in Mathematics, Princeton University Press, Princeton, NJ, 1997. Their invariants and representations; Fifteenth printing; Princeton Paperbacks. MR 1488158
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 164 (1972), 189-198
- MSC: Primary 22.60
- DOI: https://doi.org/10.1090/S0002-9947-1972-0286940-2
- MathSciNet review: 0286940