Slices of maps and Lebesgue area
HTML articles powered by AMS MathViewer
- by William P. Ziemer
- Trans. Amer. Math. Soc. 164 (1972), 139-151
- DOI: https://doi.org/10.1090/S0002-9947-1972-0291415-0
- PDF | Request permission
Abstract:
For a large class of k dimensional surfaces, S, it is shown that the Lebesgue area of S can be essentially expressed in terms of an integral of the $k - 1$ area of a family, F, of $k - 1$ dimensional surfaces that cover S. The family F is regarded as being composed of the slices of F. The definition of the $k - 1$ area of a surface restricted to one of its slices is formulated in terms of the theory developed by H. Federer, [F3].References
- Lamberto Cesari, Surface area, Annals of Mathematics Studies, No. 35, Princeton University Press, Princeton, N. J., 1956. MR 0074500
- Herbert Federer, Some integralgeometric theorems, Trans. Amer. Math. Soc. 77 (1954), 238–261. MR 63686, DOI 10.1090/S0002-9947-1954-0063686-6
- Herbert Federer, On Lebesgue area, Ann. of Math. (2) 61 (1955), 289–353. MR 67178, DOI 10.2307/1969917
- Hebert Federer, Currents and area, Trans. Amer. Math. Soc. 98 (1961), 204–233. MR 123682, DOI 10.1090/S0002-9947-1961-0123682-0
- Herbert Federer, Geometric measure theory, Die Grundlehren der mathematischen Wissenschaften, Band 153, Springer-Verlag New York, Inc., New York, 1969. MR 0257325
- Herbert Federer and Wendell H. Fleming, Normal and integral currents, Ann. of Math. (2) 72 (1960), 458–520. MR 123260, DOI 10.2307/1970227
- Bent Fuglede, Extremal length and functional completion, Acta Math. 98 (1957), 171–219. MR 97720, DOI 10.1007/BF02404474
- R. E. Fullerton, The Cesari-Cavalieri area of a surface, Duke Math. J. 30 (1963), 151–160. MR 145045, DOI 10.1215/S0012-7094-63-03017-5
- Ronald Gariepy, Current valued measures and Geöcze area, Trans. Amer. Math. Soc. 166 (1972), 133–146. MR 293066, DOI 10.1090/S0002-9947-1972-0293066-0
- J. H. Michael, The convergence of measures on parametric surfaces, Trans. Amer. Math. Soc. 107 (1963), 140–152. MR 146352, DOI 10.1090/S0002-9947-1963-0146352-3 C. B. Morrey, A class of representations of manifolds. I, II, Amer. J. Math. 55 (1933), 683-707; ibid. 56 (1934), 275-293. —, An analytic characterization of surfaces of finite Lebesgue area. I, II, Amer. J. Math. 57 (1935), 692-702; ibid. 58 (1936), 313-322.
- Tibor Radó, Length and Area, American Mathematical Society Colloquium Publications, Vol. 30, American Mathematical Society, New York, 1948. MR 0024511, DOI 10.1090/coll/030
- Raymond Rishel, Area as the integral of lengths of contours, Trans. Amer. Math. Soc. 97 (1960), 95–119. MR 118805, DOI 10.1090/S0002-9947-1960-0118805-2
- Paul Slepian, Theory of Lebesgue area of continuous maps of $2$-manifolds into $n$-space, Ann. of Math. (2) 68 (1958), 669–689. MR 98819, DOI 10.2307/1970161
- Paul Slepian, On the Lebesgue area of a doubled map, Pacific J. Math. 8 (1958), 613–620. MR 132156, DOI 10.2140/pjm.1958.8.613
- William P. Ziemer, Some lower bounds for Lebesgue area, Pacific J. Math. 19 (1966), 381–390. MR 202971, DOI 10.2140/pjm.1966.19.381
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 164 (1972), 139-151
- MSC: Primary 28A75
- DOI: https://doi.org/10.1090/S0002-9947-1972-0291415-0
- MathSciNet review: 0291415