Reflection principle for systems of first order elliptic equations with analytic coefficients
HTML articles powered by AMS MathViewer
- by Chung Ling Yu
- Trans. Amer. Math. Soc. 164 (1972), 489-501
- DOI: https://doi.org/10.1090/S0002-9947-1972-0293110-0
- PDF | Request permission
Abstract:
Let T be a simply connected domain of the $z = x + iy$ plane, whose boundary contains a portion $\sigma$ of the x-axis. Also let $A(z,\zeta ),B(z,\zeta ),F(z,\zeta ),\alpha (z),\beta (z)$ and $\rho (z)$ be holomorphic functions for $z,\zeta \in T \cup \sigma \cup \bar T$, with $\alpha (z) - i\beta (z) \ne 0$ for $z \in \bar T \cup \sigma ,\alpha (z) + i\beta (z) \ne 0$ for $z \in T \cup \sigma$. Furthermore, we assume that $\alpha (x)$ and $\beta (x)$ are real valued functions for $x \in \sigma$. Our reflection principle states that for any solution $w = u + iv$ of an equation of the type $\partial w/\partial \bar z = A(z,\bar z)w + B(z,\bar z)\bar w + F(z,\bar z)$ in T under the boundary condition $\alpha (x)u + \beta (x)v = \rho (x)$ on $\sigma ,w$ can be continued analytically across the x-axis, onto the entire mirror image $\bar T$.References
- Lipman Bers, Theory of pseudo-analytic functions, New York University, Institute for Mathematics and Mechanics, New York, 1953. MR 0057347
- James H. Bramble, Continuation of biharmonic functions across circular arcs, J. Math. Mech. 7 (1958), 905–924. MR 0100180, DOI 10.1512/iumj.1958.7.57052
- Robert D. Brown, Reflection laws of fourth order elliptic differential equations in two independent variables, J. Math. Mech. 13 (1964), 365–383. MR 0165237
- R. J. Duffin, Continuation of biharmonic functions by reflection, Duke Math. J. 22 (1955), 313–324. MR 79105, DOI 10.1215/S0012-7094-55-02233-X
- P. R. Garabedian, Analyticity and reflection for plane elliptic systems, Comm. Pure Appl. Math. 14 (1961), 315–322. MR 136848, DOI 10.1002/cpa.3160140311
- Alfred Huber, On the reflection principle for polyharmonic functions, Comm. Pure Appl. Math. 9 (1956), 471–478. MR 85355, DOI 10.1002/cpa.3160090318
- Richard Kraft, Reflection of polyharmonic functions in two independent variables, J. Math. Anal. Appl. 19 (1967), 505–518. MR 213600, DOI 10.1016/0022-247X(67)90008-X
- Richard Kraft, Analyticity and reflectivity for first order systems of elliptic type in two independent variables, J. Math. Anal. Appl. 29 (1970), 1–17. MR 271532, DOI 10.1016/0022-247X(70)90099-5
- Hans Lewy, On the reflection laws of second order differential equations in two independent variables, Bull. Amer. Math. Soc. 65 (1959), 37–58. MR 104048, DOI 10.1090/S0002-9904-1959-10270-6 N. I. Mushelišvili, Singular integral equations. Boundary problems of function theory and their application to mathematical physics, OGIZ, Moscow, 1946; English transl., Noordhoff, Groningen, 1953. MR 8, 586; MR 15, 434.
- Hillel Poritsky, On reflection of singularities of harmonic functions corresponding to the boundary condition $\partial u/\partial n+au=0$, Bull. Amer. Math. Soc. 43 (1937), no. 12, 873–884. MR 1563652, DOI 10.1090/S0002-9904-1937-06673-0
- James M. Sloss, Reflection of biharmonic functions across analytic boundary conditions with examples, Pacific J. Math. 13 (1963), 1401–1415. MR 157110, DOI 10.2140/pjm.1963.13.1401
- James M. Sloss, Reflection laws of high order elliptic differential equations in two independent variables with constant coefficients and unequal characteristics across analytic boundary conditions, Duke Math. J. 35 (1968), 415–434. MR 228823
- I. N. Vekua, Generalized analytic functions, Pergamon Press, London-Paris-Frankfurt; Addison-Wesley Publishing Company, Inc., Reading, Mass., 1962. MR 0150320
- I. N. Vekua, Novye metody rešeniya èlliptičeskih uravneniĭ, OGIZ, Moscow-Leningrad, 1948 (Russian). MR 0034503
- Chung Ling Yu, Reflection principle for solutions of higher order elliptic equations with analytic coefficients, SIAM J. Appl. Math. 20 (1971), 358–363. MR 289929, DOI 10.1137/0120038
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 164 (1972), 489-501
- MSC: Primary 30A92
- DOI: https://doi.org/10.1090/S0002-9947-1972-0293110-0
- MathSciNet review: 0293110