Associo-symmetric algebras
Authors:
Raymond Coughlin and Michael Rich
Journal:
Trans. Amer. Math. Soc. 164 (1972), 443-451
MSC:
Primary 17A30
DOI:
https://doi.org/10.1090/S0002-9947-1972-0310025-X
MathSciNet review:
0310025
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let A be an algebra over a field F satisfying $(x,x,x) = 0$ with a function $g:A \times A \times A \to F$ such that $(xy)z = g(x,y,z)x(yz)$ for all x, y, z in A. If $g({x_1},{x_2},{x_3}) = g({x_{1\pi }},{x_{2\pi }},{x_{3\pi }})$ for all $\pi$ in ${S_3}$ and all ${x_1},{x_2},{x_3}$ in A then A is called an associo-symmetric algebra. It is shown that a simple associo-symmetric algebra of degree $> 2$ or degree $= 1$ over a field of characteristic $\ne 2$ is associative. In addition a finite-dimensional semisimple algebra in this class has an identity and is a direct sum of simple algebras.
- A. A. Albert, Power-associative rings, Trans. Amer. Math. Soc. 64 (1948), 552–593. MR 27750, DOI https://doi.org/10.1090/S0002-9947-1948-0027750-7
- A. A. Albert, A theory of power-associative commutative algebras, Trans. Amer. Math. Soc. 69 (1950), 503–527. MR 38959, DOI https://doi.org/10.1090/S0002-9947-1950-0038959-X
- Louis A. Kokoris, New results on power-associative algebras, Trans. Amer. Math. Soc. 77 (1954), 363–373. MR 65543, DOI https://doi.org/10.1090/S0002-9947-1954-0065543-8
- Frank Kosier, On a class of nonflexible algebras, Trans. Amer. Math. Soc. 102 (1962), 299–318. MR 133353, DOI https://doi.org/10.1090/S0002-9947-1962-0133353-3
- Robert H. Oehmke, Commutative power-associative algebras of degree one, J. Algebra 14 (1970), 326–332. MR 286851, DOI https://doi.org/10.1016/0021-8693%2870%2990108-0
- Richard D. Schafer, An introduction to nonassociative algebras, Pure and Applied Mathematics, Vol. 22, Academic Press, New York-London, 1966. MR 0210757
Retrieve articles in Transactions of the American Mathematical Society with MSC: 17A30
Retrieve articles in all journals with MSC: 17A30
Additional Information
Keywords:
Associo-symmetric,
power-associative,
orthogonal idempotents,
semisimple,
degree,
principal idempotent
Article copyright:
© Copyright 1972
American Mathematical Society