$C^{\ast }$-algebras generated by Fourier-Stieltjes transforms
HTML articles powered by AMS MathViewer
- by Charles F. Dunkl and Donald E. Ramirez
- Trans. Amer. Math. Soc. 164 (1972), 435-441
- DOI: https://doi.org/10.1090/S0002-9947-1972-0310548-3
- PDF | Request permission
Abstract:
For G a locally compact group and $\hat G$ its dual, let ${\mathcal {M}_d}(\hat G)$ be the ${C^ \ast }$-algebra generated by the Fourier-Stieltjes transforms of the discrete measures on G. We show that the canonical trace on ${\mathcal {M}_d}(\hat G)$ is faithful if and only if G is amenable as a discrete group. We further show that if G is nondiscrete and amenable as a discrete group, then the only measures in ${\mathcal {M}_d}(\hat G)$ are the discrete measures, and also the sup and lim sup norms are identical on ${\mathcal {M}_d}(\hat G)$. These results are extensions of classical theorems on almost periodic functions on locally compact abelian groups.References
- Jacques Dixmier, Les $C^{\ast }$-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars & Cie, Éditeur-Imprimeur, Paris, 1964 (French). MR 0171173
- Charles F. Dunkl and Donald E. Ramirez, Helson sets in compact and locally compact groups, Michigan Math. J. 19 (1972), 65–69. MR 324315
- Charles F. Dunkl and Donald E. Ramirez, $C^*$-algebras generated by measures, Bull. Amer. Math. Soc. 77 (1971), 411–412. MR 273418, DOI 10.1090/S0002-9904-1971-12719-2
- Frederick P. Greenleaf, Invariant means on topological groups and their applications, Van Nostrand Mathematical Studies, No. 16, Van Nostrand Reinhold Co., New York-Toronto-London, 1969. MR 0251549 M. Naimark, Normed rings, GITTL, Moscow, 1956; English transl., Noordhoff, Groningen, 1959. MR 19, 870; MR 22 #1824.
- Hans Reiter, Classical harmonic analysis and locally compact groups, Clarendon Press, Oxford, 1968. MR 0306811
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 164 (1972), 435-441
- MSC: Primary 43A30; Secondary 22D25, 46L05
- DOI: https://doi.org/10.1090/S0002-9947-1972-0310548-3
- MathSciNet review: 0310548