On the asymptotic behaviour of nonnegative solutions of a certain integral inequality
HTML articles powered by AMS MathViewer
- by Gunnar A. Brosamler
- Trans. Amer. Math. Soc. 165 (1972), 275-289
- DOI: https://doi.org/10.1090/S0002-9947-1972-0291739-7
- PDF | Request permission
Abstract:
The asymptotic behaviour of nonnegative solutions of a certain integral inequality is discussed, in the framework of a probabilistic-potential theoretic boundary theory.References
- Gunnar A. Brosamler, Potential theoretic analysis of a certain integral equation, Trans. Amer. Math. Soc. 129 (1967), 218–248. MR 219143, DOI 10.1090/S0002-9947-1967-0219143-6
- G. A. Hunt, Markoff chains and Martin boundaries, Illinois J. Math. 4 (1960), 313–340. MR 123364
- John G. Kemeny, J. Laurie Snell, and Anthony W. Knapp, Denumerable Markov chains, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0207042
- G. Placzek, On the theory of the slowing down of neutrons in heavy substances, Phys. Rev. (2) 69 (1946), 423–438. MR 16527
- Morton Slater and Herbert S. Wilf, A class of linear differential-difference equations, Pacific J. Math. 10 (1960), 1419–1427. MR 126032
- Morton L. Slater, On the equation $\varphi (x)=\int _{x}{}^{x+1}K(\xi )f[\varphi (\xi )]d\xi$, Pacific J. Math. 20 (1967), 155–166. MR 206653
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 165 (1972), 275-289
- MSC: Primary 45M05; Secondary 60J45
- DOI: https://doi.org/10.1090/S0002-9947-1972-0291739-7
- MathSciNet review: 0291739