$L _{p}$ derivatives and approximate Peano derivatives
HTML articles powered by AMS MathViewer
- by Michael J. Evans PDF
- Trans. Amer. Math. Soc. 165 (1972), 381-388 Request permission
Abstract:
It is known that approximate derivatives and kth Peano derivatives share several interesting properties with ordinary derivatives. In this paper the author points out that kth ${L_p}$ derivatives also share these properties. Furthermore, a definition for a kth approximate Peano derivative is given which generalizes the notions of a kth Peano derivative, a kth ${L_p}$ derivative, and an approximate derivative. It is then shown that a kth approximate Peano derivative at least shares the property of belonging to Baire class one with these other derivatives.References
- J. Marshall Ash, Generalizations of the Riemann derivative, Trans. Amer. Math. Soc. 126 (1967), 181–199. MR 204583, DOI 10.1090/S0002-9947-1967-0204583-1
- A.-P. Calderón and A. Zygmund, Local properties of solutions of elliptic partial differential equations, Studia Math. 20 (1961), 171–225. MR 136849, DOI 10.4064/sm-20-2-181-225
- J. A. Clarkson, A property of derivatives, Bull. Amer. Math. Soc. 53 (1947), 124–125. MR 19712, DOI 10.1090/S0002-9904-1947-08757-7 A. Denjoy, Sur l’intégration des coefficients différentiels d’order supérieur, Fund. Math. 25 (1935), 273-326. —, Sur une propriété des fonctions dérivées exactes, Enseignement Math. 18 (1916), 320-328.
- Casper Goffman and C. J. Neugebauer, On approximate derivatives, Proc. Amer. Math. Soc. 11 (1960), 962–966. MR 118792, DOI 10.1090/S0002-9939-1960-0118792-2 A. Khintchine, Recherches sur la structure des fonctions mesurables, Fund. Math. 9 (1927), 217-279. J. Marcinkiewicz and A. Zygmund, On the differentiability of functions and the summability of trigonometric series, Fund. Math. 26 (1936), 38-69.
- Solomon Marcus, On a theorem of Denjoy and on approximate derivative, Monatsh. Math. 66 (1962), 435–440. MR 151558, DOI 10.1007/BF01298240
- C. J. Neugebauer, Smoothness and differentiability in $L_{p}$, Studia Math. 25 (1964/65), 81–91. MR 181715, DOI 10.4064/sm-25-1-81-91
- H. William Oliver, The exact Peano derivative, Trans. Amer. Math. Soc. 76 (1954), 444–456. MR 62207, DOI 10.1090/S0002-9947-1954-0062207-1 G. Tolstoff, Sur la dérivée approximative exacte, Mat. Sb. 4 (1938), 499-504.
- Clifford E. Weil, On properties of derivatives, Trans. Amer. Math. Soc. 114 (1965), 363–376. MR 176007, DOI 10.1090/S0002-9947-1965-0176007-2
- Z. Zahorski, Sur la première dérivée, Trans. Amer. Math. Soc. 69 (1950), 1–54 (French). MR 37338, DOI 10.1090/S0002-9947-1950-0037338-9
Additional Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 165 (1972), 381-388
- MSC: Primary 26A24
- DOI: https://doi.org/10.1090/S0002-9947-1972-0293030-1
- MathSciNet review: 0293030