Set-valued measures
HTML articles powered by AMS MathViewer
- by Zvi Artstein
- Trans. Amer. Math. Soc. 165 (1972), 103-125
- DOI: https://doi.org/10.1090/S0002-9947-1972-0293054-4
- PDF | Request permission
Abstract:
A set-valued measure is a $\sigma$-additive set-function which takes on values in the nonempty subsets of a euclidean space. It is shown that a bounded and non-atomic set-valued measure has convex values. Also the existence of selectors (vector-valued measures) is investigated. The Radon-Nikodym derivative of a set-valued measure is a set-valued function. A general theorem on the existence of R.-N. derivatives is established. The techniques require investigations of measurable set-valued functions and their support functions.References
- Robert J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl. 12 (1965), 1–12. MR 185073, DOI 10.1016/0022-247X(65)90049-1
- Robert J. Aumann, Existence of competitive equilibria in markets with a continuum of traders, Econometrica 34 (1966), 1–17. MR 191623, DOI 10.2307/1909854
- H. T. Banks and Marc Q. Jacobs, A differential calculus for multifunctions, J. Math. Anal. Appl. 29 (1970), 246–272. MR 265937, DOI 10.1016/0022-247X(70)90078-8
- T. F. Bridgland Jr., Trajectory integrals of set valued functions, Pacific J. Math. 33 (1970), 43–68. MR 262454
- Ch. Castaing, Sur les multi-applications mesurables, Rev. Française Informat. Recherche Opérationnelle 1 (1967), no. 1, 91–126 (French). MR 0223527
- Richard Datko, Measurability properties of set-valued mappings in a Banach space, SIAM J. Control 8 (1970), 226–238. MR 0274691
- Gerard Debreu, Integration of correspondences, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 351–372. MR 0228252
- Gerard Debreu and David Schmeidler, The Radon-Nikodým derivative of a correspondence, Proceedings of the Sixth Berkeley Symposium on Mathematical Statistics and Probability (Univ. California, Berkeley, Calif., 1970/1971) Univ. California Press, Berkeley, Calif., 1972, pp. 41–56. MR 0407230
- Hubert Halkin, Some further generalizations of a theorem of Lyapounov, Arch. Rational Mech. Anal. 17 (1964), 272–277. MR 174421, DOI 10.1007/BF00282290
- Paul R. Halmos, The range of a vector measure, Bull. Amer. Math. Soc. 54 (1948), 416–421. MR 24963, DOI 10.1090/S0002-9904-1948-09020-6
- Henry Hermes, Calculus of set valued functions and control, J. Math. Mech. 18 (1968/1969), 47–59. MR 0231972, DOI 10.1512/iumj.1969.18.18006
- Henry Hermes and Joseph P. LaSalle, Functional analysis and time optimal control, Mathematics in Science and Engineering, Vol. 56, Academic Press, New York-London, 1969. MR 0420366 W. Hildenbrand, Pareto optimality for a measure space of economic agents, Int. Econ. Rev. 10 (1969), 363-372.
- C. J. Himmelberg and F. S. Van Vleck, Some selection theorems for measurable functions, Canadian J. Math. 21 (1969), 394–399. MR 236341, DOI 10.4153/CJM-1969-041-7
- Masuo Hukuhara, Intégration des applications mesurables dont la valeur est un compact convexe, Funkcial. Ekvac. 10 (1967), 205–223 (French). MR 226503
- Marc Q. Jacobs, On the approximation of integrals of multivalued functions, SIAM J. Control 7 (1969), 158–177. MR 0254209 R. T. Rockafellar, Convex analysis, Princeton Univ. Press, Princeton, N. J., 1970.
- R. T. Rockafellar, Measurable dependence of convex sets and functions on parameters, J. Math. Anal. Appl. 28 (1969), 4–25. MR 247019, DOI 10.1016/0022-247X(69)90104-8
- David Schmeidler, Convexity and compactness in countably additive correspondences, Differential Games and Related Topics (Proc. Internat. Summer School, Varenna, 1970) North-Holland, Amsterdam, 1971, pp. 235–242. MR 0306442 K. Vind, Edgeworth-allocations in an exchange economy with many traders, Int. Econ. Rev. 5 (1964), 165-177.
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 165 (1972), 103-125
- MSC: Primary 28A45
- DOI: https://doi.org/10.1090/S0002-9947-1972-0293054-4
- MathSciNet review: 0293054