A representation theorem for functions holomorphic off the real axis
HTML articles powered by AMS MathViewer
- by Albert Baernstein
- Trans. Amer. Math. Soc. 165 (1972), 159-165
- DOI: https://doi.org/10.1090/S0002-9947-1972-0293111-2
- PDF | Request permission
Abstract:
Let f be holomorphic in the union of the upper and lower half planes, and let $p \in [1,\infty )$. We prove that there exists an entire function $\varphi$ and a sequence $\{ {f_n}\}$ in ${L^p}(R)$ satisfying $\left \| {{f_n}} \right \|_p^{1/n} \to 0$ such that \[ f(z) = \varphi (z) + \sum \limits _{n = 0}^\infty {\int _{ - \infty }^\infty {{{(t - z)}^{ - n - 1}}{f_n}(t)dt.} } \] This complements an earlier result of the author’s on representation of function holomorphic outside a compact subset of the Riemann sphere. A principal tool in both proofs is the Köthe duality between the spaces of functions holomorphic on and off a subset of the sphere. A corollary of the present result is that each hyperfunction of one variable can be represented by a sum of Cauchy integrals over the real axis.References
- Albert Baernstein II, Representation of holomorphic functions by boundary integrals, Trans. Amer. Math. Soc. 160 (1971), 27–37. MR 283182, DOI 10.1090/S0002-9947-1971-0283182-0
- Gottfried Köthe, Dualität in der Funktionentheorie, J. Reine Angew. Math. 191 (1953), 30–49 (German). MR 56824, DOI 10.1515/crll.1953.191.30
- Charles Roumieu, Sur quelques extensions de la notion de distribution, Ann. Sci. École Norm. Sup. (3) 77 (1960), 41–121 (French). MR 0121643
- Mikio Sato, Theory of hyperfunctions. I, J. Fac. Sci. Univ. Tokyo Sect. I 8 (1959), 139–193. MR 114124
- Helmut H. Schaefer, Topological vector spaces, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1966. MR 0193469
- Albert Wilansky, Functional analysis, Blaisdell Publishing Co. [Ginn and Co.], New York-Toronto-London, 1964. MR 0170186
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 165 (1972), 159-165
- MSC: Primary 30A86
- DOI: https://doi.org/10.1090/S0002-9947-1972-0293111-2
- MathSciNet review: 0293111