Schauder bases in the Banach spaces $C^{k}(\textbf {T}^{q})$
HTML articles powered by AMS MathViewer
- by Steven Schonefeld
- Trans. Amer. Math. Soc. 165 (1972), 309-318
- DOI: https://doi.org/10.1090/S0002-9947-1972-0293375-5
- PDF | Request permission
Abstract:
A Schauder basis is constructed for the space ${C^k}({T^q})$ of k-times continuously differentiable functions on ${T^q}$, the product of q copies of the one-dimensional torus. This basis has the property that is also a basis for the spaces ${C^1}({T^q}),{C^2}({T^q}), \ldots ,{C^{k - 1}}({T^q})$, and an interpolating basis for $C({T^q})$.References
- J. H. Ahlberg, E. N. Nilson, and J. L. Walsh, Best approximation and convergence properties of higher-order spline approximations, J. Math. Mech. 14 (1965), 231β243. MR 0214978
- J. H. Ahlberg, E. N. Nilson, and J. L. Walsh, The theory of splines and their applications, Academic Press, New York-London, 1967. MR 0239327
- Z. Ciesielski, A construction of basis in $C^{(1)}\,(I^{2})$, Studia Math. 33 (1969), 243β247. MR 248507, DOI 10.4064/sm-33-2-243-247 Z. Ciesielski and J. Domsta, Construction of an orthonormal basis in ${C^m}({I^d})$ and $W_p^m({I^d})$, Studia Math. (to appear).
- B. S. Mitjagin, The homotopy structure of a linear group of a Banach space, Uspehi Mat. Nauk 25 (1970), no.Β 5(155), 63β106 (Russian). MR 0341523
- J. Radecki, Orthonormal basis in the space $C_{1}[0,1].$, Studia Math. 35 (1970), 123β163. MR 268587, DOI 10.4064/sm-35-2-123-163
- Steven Schonefeld, Schauder bases in spaces of differentiable functions, Bull. Amer. Math. Soc. 75 (1969), 586β590. MR 244753, DOI 10.1090/S0002-9904-1969-12249-4
- Z. Semadeni, Product Schauder bases and approximation with nodes in spaces of continuous functions, Bull. Acad. Polon. Sci. SΓ©r. Sci. Math. Astronom. Phys. 11 (1963), 387β391. MR 154110
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 165 (1972), 309-318
- MSC: Primary 46B15
- DOI: https://doi.org/10.1090/S0002-9947-1972-0293375-5
- MathSciNet review: 0293375