A characterization of compact multipliers
HTML articles powered by AMS MathViewer
- by Gregory F. Bachelis and Louis Pigno
- Trans. Amer. Math. Soc. 165 (1972), 319-322
- DOI: https://doi.org/10.1090/S0002-9947-1972-0300012-X
- PDF | Request permission
Abstract:
Let G be a compact abelian group and $\varphi$ a complex-valued function defined on the dual $\Gamma$. The main result of this paper is that $\varphi$ is a compact multiplier of type $(p,q),1 \leqq p < \infty$ and $1 \leqq q \leqq \infty$, if and only if it satisfies the following condition: Given $\varepsilon > 0$ there corresponds a finite set $K \subset \Gamma$ such that $|\sum {a_\gamma }{b_\gamma }\varphi (\gamma )| < \varepsilon$ whenever $P = \sum {a_\gamma }\gamma$ and $Q = \sum {b_\gamma }\gamma$ are trigonometric polynomials satisfying ${\left \| P \right \|_p} \leqq 1,{\left \| Q \right \|_{q’}} \leqq 1$ ($q’$ the conjugate index of q) and ${b_\gamma } = 0$ for $\gamma \in K$. Using the above characterization we obtain the following necessary and sufficient condition for $\varphi$ to be the Fourier transform of a continuous complex-valued function on G: Given $\varepsilon > 0$ there corresponds a finite set $K \subset \Gamma$ such that $|\sum {b_\gamma }\varphi (\gamma )| < \varepsilon$ whenever $Q = \sum {b_\gamma }\gamma$ is a trigonometric polynomial satisfying ${\left \| Q \right \|_1} \leqq 1$ and ${b_\gamma } = 0$ for $\gamma \in K$.References
- Gregory F. Bachelis and John E. Gilbert, Banach spaces of compact multipliers and their dual spaces, Math. Z. 125 (1972), 285–297. MR 338693, DOI 10.1007/BF01110992
- Raouf Doss, Approximations and representations for Fourier transforms, Trans. Amer. Math. Soc. 153 (1971), 211–221. MR 268597, DOI 10.1090/S0002-9947-1971-0268597-9
- Raouf Doss, On the transform of a singular or an absolutely continuous measure, Proc. Amer. Math. Soc. 19 (1968), 361–363. MR 222569, DOI 10.1090/S0002-9939-1968-0222569-4
- Raouf Doss, On the Fourier-Stieltjes transforms of singular or absolutely continuous measures, Math. Z. 97 (1967), 77–84. MR 209769, DOI 10.1007/BF01111125 R. E. Edwards, Fourier series: A modern introduction. II, Holt, Rinehart and Winston, New York, 1967. MR 36 #5588.
- R. E. Edwards, Criteria for Fourier transforms, J. Austral. Math. Soc. 7 (1967), 239–246. MR 0216243
- R. E. Edwards, On factor functions, Pacific J. Math. 5 (1955), 367–378. MR 72433 G. I. Gaudry, Quasimeasures and multiplier problems, Doctoral Thesis, Australian National University, Canberra, Australia, 1966.
- Henry Helson, Isomorphisms of abelian group algebras, Ark. Mat. 2 (1953), 475–487. MR 58138, DOI 10.1007/BF02591001
- Walter Rudin, Fourier analysis on groups, Interscience Tracts in Pure and Applied Mathematics, No. 12, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0152834
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 165 (1972), 319-322
- MSC: Primary 43A22; Secondary 43A25
- DOI: https://doi.org/10.1090/S0002-9947-1972-0300012-X
- MathSciNet review: 0300012