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SEGMENT-PRESERVING MAPS OF PARTIAL ORDERS

BY

MARTIN AIGNERO AND GEERT PRINS

Abstract. A bijective map from a partial order P to a partial order Q is defined

to be segment-preserving if the image of every segment in P is a segment in Q. It is

proved that a partial order P with 0-element admits nontrivial segment-preserving

maps if and only if P is decomposable in a certain sense. By introducing the concept

of "strong" segment-preserving maps further insight into the relations between

segment-preserving maps and decompositions of partial orders is obtained.

I. Introduction. Let P be a partial order, then for a, b eP with a^6we define

the segment [a, b] as the set of all xeP with a^x^b. Let P, ß be partial orders

and suppose the function </> maps the elements one-one onto those of Q. The map

tf> is called segment-preserving if for any segment [a, b]^P the set {</>(x) : x e [a, b]}

forms a segment of Q. The map </> is an isomorphism if either for all a, b e P, a < b

if and only if </>(a) < </>(b), or for all a, b e P, a < b if and only if </>(b) < </>(a). Clearly

an isomorphism is segment-preserving and we shall henceforth refer to isomor-

phisms as trivial maps.

The purpose of this note is an investigation of all possible segment-preserving

maps of any partial order P which possesses a zero-element(2). Closely related to

our work is a conjecture of G.-C. Rota, later proved by A. M. Gleason (unpub-

lished) that a partially ordered set is essentially determined by the order of inclusion

on its segments. Let P be a partially ordered set with zero-element and ß an

arbitrary partial order such that P and ß have isomorphic orders on their segments.

This isomorphism, restricted to the trivial segments, i.e. the elements of P, is

clearly a segment-preserving map </> from P onto ß, and tf)'1 is also segment-

preserving. It now follows immediately from our Theorem 5 that if ^ is nontrivial,

then there exist U, V such that P=U® V, Q= U* <g> V, where U* is the partial

order dual to U and ® stands for the direct product. This result is obtained inde-

pendently by Gleason, who has also extended it to a more intricate result on

arbitrary partial orders.
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After preliminary remarks we introduce semiproducts and semidecompositions

of partial orders in §111 and proceed to relate them to the structure of partial orders

which admit nontrivial maps (§IV). The final section is devoted to a discussion of

strongly segment-preserving maps and the determination of those partial orders

for which every segment-preserving map is of that type.

Throughout the paper the term map shall always mean a segment-preserving

map. A map will mostly be denoted by </> and we shall frequently use the abbrevia-

tion <f>(x) = x' for x e P. <f>[a, b] = [«', v'] means the segment [a, b] is mapped by <f>

onto the segment [u, v']. When we refer to the set of elements of a partial order P,

regardless of the ordering, we shall use the symbol EiP). If, for two partial orders

P, g, F(P) £ F(g) and a ̂  ¿in Piffle in g hold, we write P£ g. The notation

xOy indicates x, y are incomparable elements.

II. Preliminary results. Throughout this section P will denote a partial order,

<j> a map acting on P.

Proposition 1. Let P have a zero-element 0. If</>[0, b] = [0', b'] for all b e P ior,

similarly, if<j>[0, b] = [b', O']for all beP) then <f> is trivial.

Proof. We first verify xOy iff x'Oy' for x, ye P. If, say, x<y then xe[0,j]

and hence x' e [0', y'] (or x' e [y', 0']). In either case x', y' are comparable in c¿(P).

Conversely x'<y' implies x'e[0',y'] (or y'e[x',0']) and hence xe[0, v] (or

y e [0, x]). Thus x, y are comparable. Now the hypothesis plainly implies that </>

either preserves all relations in P or inverts all relations, and hence is an iso-

morphism.

Proposition 2. Let P=[a,b] be a segment. Suppose <j>[a, b] = [u',v']^[a',b'],

± [b', a'], then

(i) uOv in P,

(1) (ii) a'O b'in </>(P),

(iii) u, v are both different from a, b.

Proof. Assume u, v are comparable. Then 4>[u, v] (or <j>[v, u]) =[u', v'] = <j>[a, b],

and hence [u, v] (or [c, «]) = [a, b], a contradiction. Clearly (i) now implies (iii).

If a', V are comparable, then a' e <j>[u, b] or b' e </>[a, u] which implies a e [u, b] or

b e [a, u], respectively. But this means u = a or u=b, contradicting (iii).

Proposition 3. Let P=[a, b] be a segment and suppose <j> maps P nontrivially.

Then <f>[a, b]^[a', b'], + [b', a'], and hence (1) holds.

Proof. Let us assume <f>[a,b] = [a',b'] (the argument for the other case being

entirely analogous). By Proposition 1, there exists ceP with </>[a, c]^[a', c'], i.e.,

<f>[a, c] = [a', d'] with c^d. The segment [a, c] now satisfies the hypothesis of the

preceding proposition, yet (1) (iii) is violated.
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Corollary 1. Let P have a zero-element. For any segment [a, b]^P and any tf>

we have

either </>[a, b] = [a', b'] or =[b', a'], in which case <f> maps [a, b] trivially,

(2)   or </>[a, b] = [«', v'] with u, v both different from a, b, in which case </> maps

[a, b] nontrivially.

Proposition 4. Let P=[a, b] be a segment and t/> a non trivial map with tf>[a, b]

= [u', v']. Then for zeP,

z sï u, z ^ v => z = b,

z < u, z ^ v => z = a,
(3)

z  § a', z' 3: b' => z' = v',

z' Ú a', z' ^ b' => z' = u'.

Proof. Assume z^u, z^v. Then z'e<b[u,b] = [u', b'] by (2), and similarly

z' e [b', v']. But this implies z' = b', and thus z=b. The remaining statements are

proved in a similar fashion.

Proposition 5. Let P= [a, b] be a segment and </> a nontrivial map with </>[a, b]

= [u',v']. Then for zeP,

(4) zOu   and   zOv   iff   z'Oa'   and   z'ob'.

Proof. The assumption zOu, zOv implies z $ [a, u], [u, b], [a, v], [v, b]. Hence

by (2) we infer z' £ [u', a'], [u', b'], [a', v'], [b', v'], or equivalently z'Oa', z'Ob'.

The converse is now obvious.

III. Semiproducts of partial orders. We begin by recalling the following con-

cepts (see e.g. [1]). Let P be a partial order. A lower semi-ideal 7 of P is a suborder

of P, i.e., E(I)^E(P), endowed with the same partial order, such that if x e I and

y ^x then y el. Let {Pa : a e A} be a family of pairwise disjoint partial orders with

zero-elements 0a (a e A). The direct sum J,aeA Pa is the partial order with E(2aeA Pa)

= Uo6A E(Pa) such that pSq in 1,aeAPa iff for some ae A, p,qePa and p-¿q in

Pa. The direct product Y~[aEA Pa is the partial order defined on the set of all /4-tuples

with coordinates from Pa (a e A), i.e., E([~[aeAPa) = {p = (- ■ -pa- ■ ■) : paePa, aeA},

such that p^ q in YI<*=a Pa iff Pa ̂ 4« for all a e A. For all a e A and all pa e Pa we

henceforth identify the element pa with the ^4-tuple (■ • -pa- ■ ■), pß=0e for ß¥=a.

With this agreement 2^ P^sEUa Pa-

Definition. Let {Pa : a e A) be a family of pairwise disjoint partial orders with

zero-elements 0a (aeA). A semiproduct of the Pa's is a lower semi-ideal 7 of the

direct product such that ^aeA Pa=l=Y\aeA Pa-

Both the direct sum and the direct product clearly are examples of semiproducts.

To facilitate the reference we shall denote semiproducts, the direct sum and the

direct product of a family {Pa : a e A} by T~laeA Pa, ]~[feA Pa, YlaeA P«, respectively.

We call the Pa's the factors of the product. When we write down the factors of a
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product we shall use the notation (e.g., in the case of two factors U, V) U X V,

U@V,U0V, respectively.

In much the same way as for direct products, we now introduce semidecom-

positions of partial orders. In defining semiproducts the factors were assumed to be

pairwise disjoint. We now identify all the zero-elements. This clearly can be done

without causing any ambiguity. Let P be a partial order with zero-element 0 and

{PaQP : a e A} a family of suborders containing 0, which are otherwise pairwise

disjoint. With P and {Pa} we may associate a unique semiproduct YJaeA Pa by the

rule (■ ■ -pa- ■ -)e E(YJaeA Pa) iff there exists peP such that paúp for all ae A.

Definition. The family {P^P : aeA} is called a semidecomposition of P if

there exists an order-preserving isomorphism a from P onto YlaeAPa such that

(J(Pa)=Pa for all aeA and all paePa. We then write P=YTaeAPa and identify

p=a(p) for all p e P.

From the definition of a semiproduct it readily follows that every factor Pa is a

lower semi-ideal of YJaeA Pa- Again from the definition of YlaeA Pa it is clear that

(■ ■ pa- ■ ■) is the unique join of the elements pa ePa. Hence ifp = (- • -pa- ■ ■), then

pa is the maximal element of the partial order {xePa : x^p}. As a consequence

we note that if for a set {x, e Pa : ieJ} there exists peP with x, ^p for all / e J,

then there exists p' e Pa with the same property.

With these preparations the following statement is immediate.

Lemma. IfP=UaeAPa and Pa=UßeBaPa.Bfor aeA, then P=Y\aY\ßPa,ß-

Proposition 6. Let P have a zero-element 0. Suppose P=YJaeA Pa andP=YTeeB Qe

are two semidecompositions of P. Then Pa = YJeeB (P<¡ n Qe)for aeA, and hence by

the Lemma P=Y\a.e (Pa r\ Qe).

Proof. Let pePa and suppose p = (- ■ -pe- • •) in YTeeB Qs- Since Pa is a lower

semi-ideal,pß ePa for all ß e B and hence Pa^YYe%B (Pa n Qe)- On the other hand,

let p e YYbíb (Pa ^ Qe), thenp = (- ■ -qB- ■ ■) with qeePan Qß. If p = (-■ pa-■ ■) in

YJaeA Pa, then qß ¿¡pa for all ß e B, since pa is the maximal element of Pa below p.

But p is the unique join of the qßs, thus p=pa, and the conclusion follows.

Every partial order P admits the trivial semidecomposition P=P X {0}. If there

are no others, P is called semi-indecomposable.

Corollary 2. If there exists a semidecomposition^) P=\~[aeA Pa ofP into semi-

indecomposable factors Pa^{0}, then this semidecomposition is unique (up to order).

Proposition 7. Let P=nae^Fa be a semidecomposition of P. If A = \Jiss At is

any partitioning of the index-set, then P = riie^ (FLeAi Pa)-

(3) The question of existence of a decomposition is unresolved in general, even in the case

of direct products.



1972] SEGMENT-PRESERVING MAPS OF PARTIAL ORDERS 355

Proof. Let p eP and p = (- ■ -pa- ■ •) in YlaeAPa- The function o(p) = (- ■ -p{- ■ ■),

where pt = (- • pa- - ) with pe = 0 for ß <£ Ait maps P onto fife.* iYlaeA, Pa) and

satisfies all the requirements.

Corollary 3. If there exists a semidecomposition P = nas/iPa of P into semi-

indecomposable factors, then any semidecomposition ofiP into two factors P = U X V

is given by U=YlßeB Pp, V— Ylyer Pyfar some partition A = B u T of the index-set A.

For brevity, we shall shorten the terms semiproduct, semidecomposition, etc.,

to 5-product, ^-decomposition, etc., in the remainder of the paper.

IV. The main theorem.

Theorem 1. Let P be a partial order with zero-element 0 and suppose <f> maps P

nontrivially. Then

(5) P = UXV,

where U={xeP : x'gO'}, V={xeP : x'äO'}.

Proof. First we note i/n K={0}. By Proposition 1 and (2) it is clear that U, V

are mapped trivially with ^(i/) = U*, </>(V) = V, and that a segment [0, z]sP is

mapped trivially iff z e U or z e V. Let p e P be arbitrary and suppose

(6) W,P] = [Pi,P2],

where />! eU,p2e V. We define the function a on P by

(V) °ÍP) = ÍP1,P2)

and proceed to show that a is the required isomorphism from P onto U Xp K

If /? e U or /7 e V, then [0,/j] is mapped trivially, hence by (6) and (7) o(p)=p.

Any pair (p,, p2) with px e U,p2e V, which is the image under (7) of some peP,

belongs to U Xp V, since by (6)Piúp,p2ísp- Furthermore, it is clear that o maps

distinct elements p, q onto distinct pairs.

To prove the range of a is all of U Xp V let r e U, s e V be such that there exists

peP with p^r,p^s. By our previous remarks, we may assume r>0,s>0. We

have r, s e [0,p], and hence r', s' e [p',,p'2], where o(p) = (p,,p2). If r=p,, s=p2,

we are finished. Suppose, w.l.o.g., r^p,, thenp',<r', and thus r<p,. Consider the

segment [r,p]. Since p, e [r,p] and p',<r',p',<p', by (2) </> maps [r, p] nontrivially,

say

(8) <l>[r,p] = [Pi,q'].

By (1)>PiO° and thus if p2Oq, we would conclude, by (4), p'Oq', a contradiction

to (8). Hence p2,q are comparable. If q-¿p2 then, by (8), r<p2, and since also

r<p,, we deduce, by (3), r=0, a contradiction. Therefore p2<q, and thus

r,p2 e [0, a]. Since/hOaand/Z^g', q $ U. Similarly/>2 <q andg' <p'2 imply g^ K.

Hence <f> maps the segment [0, q] nontrivially. Applying (3) to r' <0',r' <q' (by (8))
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and to 0'<p'2,q'<p'2, we infer <f>[0,q] = [/',p2], and thus a(q) = (r,p2). If s=p2, we

are finished. Otherwise s<p2, and we repeat the argument with s, q,p2 in place of

r,p,pu This way we finally arrive at an element t e P with a(t) = (r, s).

To prove a is order-preserving take p,qeP with o(p) = (pu p2), o(q) = (qu q2)

and p^q. Then [0, p] £ [0, #], and hence [pí,p2]£[c7Í, <72]. But this means <7Í S/>í,

p'2=q¡¡, or equivalently PiúquP2 = q2- The whole argument is clearly reversible,

and the theorem follows.

V. Strongly segment-preserving maps. According to Theorem 1, with every map

4> on P we may associate by (5) a uniquely determined ordered ^-decomposition

P=UX V of P. We express this correspondence in symbols [<f>]=[U, V}. Con-

versely, given an arbitrary ^-decomposition P=UX V, we ask whether there

exists a map c4 with [<j>] = [U, V].

Definition. A map </> on the partial order P is called strongly segment-preserving

(a strong map, for short) if the pre-image of every segment g of <p(P) has a zero-

element 0o in P.

Theorem 2. Let P be a partial order with zero-element 0. For any S-decomposition

P=U X V of P, there exists a unique strong map 4>(U, V) such that [</>(U, V)]

= [U, V]. </>(U, V) is given by

(9) <f>(U, V)(x, y) S <f>(U, V)(r, s)   iff   r í x,y Ú s

where r,x e U,s,y e V.

Proof. Let P=UX V he an arbitrary but fixed ^-decomposition of P and

</>(U, V) = ifi as given by (9). The definition of </¡ clearly implies that </j(P) is a partial

order and [<fi] = [U, V]. To prove </> is segment-preserving let [(r, y), (x, j)]£P be a

segment. Then

4>[(r, v), (x, s)] = Mk, l):r£k£x,y£lús}= [#c, y), -A(r, s)]   by (9)

and the fact that (r, y), (x, s)e P,r^x,y¿s and hence (x, y), (r, s) e P. This proves

0 is a map.

If Q = ['i>(x, y), tO", s)] is any segment of </<(P), then (r, y) e P (by (9)) and is

minimal in the pre-image of g. Hence (r, v) = 00, and ip is a strong map.

Let </> now be an arbitrary strong map with [</>] = [U, V}. We have to verify (9).

If (x, v), (r,s)eP with r ^ x, y S s, then (r, y)eP and

(10) (r,y)e[r,(r,s)l       (r, y) e [y, (x, y)].

Since, by (6), r ' g (r, s)', (x, y)'Sy', we deduce from (1) and (2) that the segments in

(10) are mapped trivially, and thus (x, y)' ^ (r, y)' ^ (r, s)'. Conversely, let (x, y)'

¿(r,s)' and consider the segment g = [(x, y)', (r, s)']£<f>(P) with 0o = (a, b). By (6),

x' â(x,y)' ú(a,b)' èb',

a' Ú (a, b)' è (r, s)' Í s'.
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Since by assumption (a, b) S (x, y), (a, b) ̂  (r, s), we infer (x, b), (a, s)eP and by (6)

tb[0,ix,b)] = [x',b'l      <b[0,(a,s)] = [a',s'].

Together with (11) this implies (x, y) á (x, b), (r, s) ^ (a, s). By the minimality of

(a, b) we now deduce y = b, r=a and thus r^x,y¿s. This means tj> = (f>(U, V), and

the proof is complete.

In the preceding proof it was shown that the right-hand-to-left-hand implication,

spelled out in (9), holds for any map. Furthermore it follows from the argument that

we may also relax the reverse implication to obtain the following characterization

of strong maps :

A map </> with {</>]= [U, V] is strong iff

whenever t/>(x, y)fí</>(r, s) then there exists (a, b) with (a, b)?£(x, y),

(a, b) S (r, s) such that <f>(x, y) ̂  <f>(a, b) ̂  <f>(r, s).

In the remainder of the paper we present characterizations of partial orders

which only admit strong maps. P will always denote a partial order, </> a map.

Theorem 3. Let P have a zero-element 0. P admits maps which are not strong iff

there exists a S-decomposition P=U X V of P and elements u, x, y greater than 0

with u, x e U, uO x, y e V, such that (x, y) e P, while (u, y) $ P.

Proof. LetP=UX Fand elements u, x, y satisfy the hypothesis. Let </> = </>(U, V)

be the strong map defined by (9). Since m Ox, (9) implies i/r(w) o ¡/>(x, y). In </t(P)

we add the relation </f(w) < </<(x, y) and all relations arising transitively therefrom.

We proceed to verify that the function </> : </>(x) = kL(x) for all x e P from P onto the

partial order <tS(P)=>i/<(P), thus constructed, is in fact a map. The only way </> can

fail to be segment-preserving is if there exists a segment R = [(k, I), (m, «)]sP such

that </>(«), i/)(x, y) e </>(P)= [<A(«i, /), <A(^, «)]• But in this case (9) implies yen, u^m.

Hence since (m, n) e P, we have (m, y)eP and thus (u, y)eP, a contradiction.

Since, by construction of </>, the pre-image of the segment [<f>(u), <f>(x, y)] is just

{u, (x, y)}, the map </> is not strong.

Conversely suppose the hypothesis fails and let </> be any map with [</>] = [U, V].

We wish to verify (12). Suppose (x,y)'-¿.(r, s)' in </>(P), then by (6)

(13) x' ú(x,y)' ^(r,s)' us'.

Case a. (x, s)eP. By (6), <f>[0,(x,s)] = [x',s'] hence by (13) (x, y)^(x, s),

(r, s)^(x, s), or equivalently y^s, r^x. Thus (r, y) eP, and setting (r, y) = (a, b)

condition (12) is satisfied.

Case b. (x, s) $ P. First we note x $ r, s $ y and s > 0. Next if xOr, then x > 0,

r > 0, trivially. But now by hypothesis (x, s) e P, a contradiction. Similarly yos

is impossible. Hence the final possibility is r<x and y<s. In this case (r,y) eP

and with (r, y) = (a, b) condition (12) is satisfied.

Figure 1 depicts an example of a partial order with zero-element which admits

other than strong maps. By Theorem 3 it is the smallest such example.
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Figure 1

Let us interpret Theorem 3 in terms of the following graph-theoretical concept.

With an arbitrary partial order P we associate its incomparability-graph I(P) whose

vertex-set E(P) is such that x is adjacent to y in I(P) iff xOy in P. If Af, N are

two components of I(P) and x e M,ye N then x and y are comparable and it

readily follows from the definition that either x< v for all x g Af and all y e N or

y<x for all such pairs. Hence we may unambiguously define M<N or N<M

according to whether x<y or y<x for x e M, y e N. This way we arrange the

components of I(P) into a linear order C€(P) = (C[ : ieJ) such that Cf <Ck iff

j<k. If P has a zero-element 0 (unit-element 1), then {0} ({1}) constitutes a com-

ponent of I(P) and hence is the first (last) member of (S(P).

With these preparations we immediately deduce

Corollary 4. Let P have a zero-element. Then every map <j> on P is strong iff for

every S-decomposition P=UX V of P and every pair Cf e ^(U), Cl e <$(V), we

either have (x, y) e P for all x e C/7 and all y eCk or (x, y) eP for no such pair.

Let P have a zero-element 0 and let us denote the unit-element (if it exists) of an

arbitrary suborder K^P by 1^, with 1P = 1. Assume P only admits strong maps.

Let P= U X F be an arbitrary but fixed S-decomposition. If M e ^(U), Ne^(V)

are such that (x,y)eP for all x e M, y e N, we write M~N, otherwise M^N.

Clearly

(i)    Af~{0}   for all   Me%(U),

(ii)   {0}~7V   for all   Ne V(V),
(14)

(iii)    M~ N   and   R < M => R ~ N,

(iv)    M ~ 7Y   and   S < N => M ~ S.

If for no choices M¿{0] e <g(U), JW{0} e tg(V) we have M~N, thenP= U® V,

the direct sum of U and V.

Suppose P^U®V and assume P can be S-decomposed into at least three

factors. Then in view of Proposition 6 at least one of U, V, say w.l.o.g. U, can be

S-decomposed into two factors U=RX S. F(P-{0}) u F(5-{0}) is contained in

a member of 'tf(U). If some (r, s)^0 e U is comparable with all of R and S, then
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(r, j)äx for all x e R and for all x e S. Hence (r, s)=lv, r=lR, s=ls. Thus &((/)

consists of {0}, U'=U-{0, lv} and possibly {lr/}, if lu exists. By assumption and

(14) (iii) there exists N^{0}e%(V) with U'~N. Writing P=R X W, where

W=S X V (by Proposition 7, this is possible) we conclude by the same argument

that <6(W) consists of {0}, W'=W-{0, lw} and possibly {lw}. Since NqVçW

u {0} and Ps £/' u {0} we infer in succession:

(x,y)6P   forall   xe R,y e N => (x,y) eP = R X W   for all   xeR,yeW

=> (x, y)eP   for all   x e R, y e V

=>(x,y)eP   forall   xeU',yeV.

If 1 u exists we deduce ( 1B, w)e P=R X W for all w e W and thus, by Proposition

7, (1 u,y)eP=UX F for all y+ lv e V. But this means P= t/ <g> F-(possibly) {!},

if 1 exists.

We summarize the results we obtained in the following statement.

Theorem 4. Let P have a zero-element. Then

(i) P admits only the trivial maps iff it is S-indecomposable,

(ii) if for every S-decomposition into two factors either P=U® V or P=U <S) V

or P=U <g) V— {1}, if 1 exists, then P only admits strong maps,

(iii) ifP can be S-decomposed into at least three factors, then the converse of (ii)

also holds.

By applying Corollary 3 to the preceding theorem and Theorem 2 we obtain

Corollary 5. Let P have a zero-element 0. If a S-decomposition P=YlaeAPa

of P into S-indecomposable factors Pa^{0} (a e A) exists, then

(i) P admits only the trivial maps iff \A\ = 1,

(ii) ifiP=Y\%APa orP=Y\%APa-(possibly){(- --lPa- ■ •)},//(• -l9a- ■ -)exists,

then P only admits strong maps,

(iii) if \A\ 2:3, then the converse of (ii) also holds,

(iv) there are exactly 2MI strong maps on P.

We note that if P contains a unit-element i.e., P is itself a segment, then any

^-decomposition of P is a direct decomposition, and thus every map on P is strong.

Theorem 5. Let P have a zero-element 0. Then

(i) </>~1 is segment-preserving on <f>(P) far any map </> iff P=UÇ§ V for any

S-decomposition ofP into two factors,

(ii) </>(P) = Q, X Q2 with Q,^</>(U), Ü2^(V)for any map </> with [t/>] = [U, V]
ififiP is a segment.

Proof. To prove (i) let P= U X Vbe any S-decomposition of P into two factors

U, V. Let 0 be a map with [<I>] = [U, V] and assume <£_1 is a map on tf>(P). Since

then the pre-image of any segment ß£$(P) is a segment in P, it, in particular,

contains a zero-element 0o, and thus tf> is strong. Let x e U, y e V be arbitrary and
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suppose c¿-1[x',/] = [(A:,/),(777,«)]. Since by (9) </>[(k, l),(m,n)] = [(m, l)',(k,n)'],

we infer x = (m, I), y = (k,n). But this means l=k=0, (m,n) = (x,y)eP, and thus

P=i/<g> V.

Conversely if P= U <8> F for any S-decomposition into two factors, then Theorem

4 implies that every map is strong. Hence if ça is a map with [(/>] = [U, V], then by (9)

^~1[(x,yy,(r,s)'] = [(r,y),(x,s)], for any segment [(x,y)',(r, s)']<^<f>(P), and ci"1

is a map.

As for (ii) let </> be the trivial map with c4(P)^P*. Since S-products are only

defined for partial orders with zero-elements, p*~ Qx must possess a zero-element,

and hence P a unit-element.

Conversely, let P be a segment and <f> any map with [</>] = [U, V]. As we remarked

above, </> is strong and hence defined by (9). Setting Qx = </>( U), Q2 = <f>{( lv,y) : y e V}

and defining a on </>(P) by a(x,y)' = (x', (lv, y)'), it readily follows from (9) that a

is the desired isomorphism from <j>(P) onto Qx X*(,>> g2-

We lastly apply Corollary 3 to the preceding theorem, and obtain

Corollary 6. Let P have a zero-element 0. If a S-decomposition P=YJaeAPa

of P into S-indecomposable factors Pa^={0} (a e A) exists, then

(i) ci"1 is segment-preserving on <f>(P) for any map c4 iff P = Y~[feA Pa,

(ii) <t>(P) = Y\aeA Qa w'th Qa = <t>(Pu) for any map <j> is the S-decomposition of<j>(P)

into S-indecomposable factors ^{0} iff P is a segment.
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