Regular functions $f(z)$ for which $z f’(z)$ is $\alpha$-spiral
HTML articles powered by AMS MathViewer
- by Richard J. Libera and Michael R. Ziegler
- Trans. Amer. Math. Soc. 166 (1972), 361-370
- DOI: https://doi.org/10.1090/S0002-9947-1972-0291433-2
- PDF | Request permission
Abstract:
A function $f(z) = z + \Sigma _{n = 2}^\infty {a_n}{z^n}$ regular in the open unit disk $\Delta = \{ z:|z| < 1\}$ is a (univalent) $\alpha$-spiral function for real $\alpha ,|\alpha | < \pi /2$, if $\operatorname {Re} \{ {e^{i\alpha }}zf’(z)/f(z)\} > 0$ for z in $\Delta$; in this case we write $f(z) \in {\mathcal {F}_\alpha }$. A fundamental result of this paper shows that the transformation \[ {f_ \ast }(z) = \frac {{azf((z + a)/(1 + \bar az))}}{{f(a)(z + a){{(1 + \bar az)}^{{e^{ - 2i\alpha }}}}}}\] defines a function in ${\mathcal {F}_\alpha }$ whenever $f(z)$ is in ${\mathcal {F}_\alpha }$ and a is in $\Delta$. If $g(z)$ is regular in $\Delta ,g(0) = 0$ and $g’(0) = 1$, then $g(z)$ is in ${\mathcal {G}_\alpha }$ if and only if $zg’(z)$ is in ${\mathcal {F}_\alpha }$. The main result of the paper is the derivation of the sharp radius of close-to-convexity for each class ${\mathcal {G}_\alpha }$; it is given as the solution of an equation in r which is dependent only on $\alpha$. (Approximate solutions of this equation were made by computer and these suggest that the radius of close-to-convexity of the class $\mathcal {G} = { \cup _\alpha }{\mathcal {G}_\alpha }$ is approximately $.99097^{+}$.) Additional results are also obtained such as the radius of convexity of ${\mathcal {G}_\alpha }$, a range of $\alpha$ for which $g(z)$ in ${\mathcal {G}_\alpha }$ is always univalent is given, etc. These conclusions all depend heavily on the transformation cited above and its analogue for ${\mathcal {G}_\alpha }$.References
- Hans Hornich, Ein Banachraum analytischer Funktionen in Zusammenhang mit den schlichten Funktionen, Monatsh. Math. 73 (1969), 36–45 (German). MR 243087, DOI 10.1007/BF01297700
- Hans Hornich, Über einen Banachraum analytischer Funktionen, Manuscripta Math. 1 (1969), 79–86 (German, with English summary). MR 243086, DOI 10.1007/BF01171135
- Wilfred Kaplan, Close-to-convex schlicht functions, Michigan Math. J. 1 (1952), 169–185 (1953). MR 54711
- F. R. Keogh and E. P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc. 20 (1969), 8–12. MR 232926, DOI 10.1090/S0002-9939-1969-0232926-9
- J. Krzyż, The radius of close-to-convexivity within the family of univalent functions, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 201–204. MR 148887
- Richard J. Libera, Univalent $\alpha$-spiral functions, Canadian J. Math. 19 (1967), 449–456. MR 214750, DOI 10.4153/CJM-1967-038-0
- Zeev Nehari, Conformal mapping, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1952. MR 0045823
- Zeev Nehari, The Schwarzian derivative and schlicht functions, Bull. Amer. Math. Soc. 55 (1949), 545–551. MR 29999, DOI 10.1090/S0002-9904-1949-09241-8
- M. S. Robertson, Radii of star-likeness and close-to-covexity, Proc. Amer. Math. Soc. 16 (1965), 847–852. MR 181744, DOI 10.1090/S0002-9939-1965-0181744-5
- M. S. Robertson, Univalent functions $f(z)$ for which $zf^{\prime } (z)$ is spirallike, Michigan Math. J. 16 (1969), 97–101. MR 244471, DOI 10.1307/mmj/1029000208
- W. C. Royster, On the univalence of a certain integral, Michigan Math. J. 12 (1965), 385–387. MR 183866, DOI 10.1307/mmj/1028999421
- Ram Singh, A note on spiral-like functions, J. Indian Math. Soc. (N.S.) 33 (1969), 49–55. MR 255794 L. Špáček, Příspěek k teorii funkci prostyčh, Časopis Pěst. Mat. Fys. 62 (1933), 12-19. M. R. Ziegler, A class of regular functions related to univalent functions, Dissertation, University of Delaware, Newark, Del., 1970.
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 166 (1972), 361-370
- MSC: Primary 30A32
- DOI: https://doi.org/10.1090/S0002-9947-1972-0291433-2
- MathSciNet review: 0291433