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UNIFORMLY BOUNDED REPRESENTATIONS
FOR THE LORENTZ GROUPS

BY

EDWARD N. WILSON^)

Abstract. A family of uniformly bounded class 1 representations of the Lorentz

groups is constructed. This family of representations includes, but is larger than, a

similar family of representations constructed by Lipsman. The construction technique

relies on a multiplicative analysis of various operators under a Mellin transform.

1. Introduction. Let G = SOe(l, n +1 ) (n £ 2) be one of the Lorentz groups. The

class 1 principal series of representations of G may be regarded as a family of

unitary representations T(-,s) for s e iR. Lipsman constructs a family of representa-

tions R( ■, s) for - 1 < Re í < 1 with the following properties :

(1) R(-, s) is unitarily equivalent to T(-,s) for s e iR.

(2) sup9eG \\R(g, s)\\<co for all s.

(3) j —> R(g, s) is an analytic operator-valued function for all g eG.

The main result of this paper is the construction of a family of representations

R(-, s) satisfying (l)-(3) for -n/2<Res<n/2.

2. Multiplicative analysis of the Fourier transform on Rn. Let n ä 2 be fixed.

Denote the standard inner product of vectors w and z in Rn by w-z and the length

of a vector w by \w\=(w-w)112. Let S={weRn : \w\ = l}. Identify Rn-{0} with

the Cartesian product R+ xS where R+ is the multiplicative group of positive real

numbers. Denote the usual Lebesgue measures on Rn and S by dw and cff. Define a

measure d*w on Rn—{0} by d*w=dw/\w\n. If dx is Lebesgue measure on the real

line, then dx/x is a Haar measure for R+. Let L2(Rn), L2(Rn - {0}), L2(S) and L2(R+)

be the spaces of square integrable functions defined by these measures. By a

classical result,

(2.1) L2(S) = | 0 77fc
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where Hk is the space of spherical harmonics of order k. We may identify

L2(Rn - {0}) with the Hubert space tensor product 7_,2(7f+) ® L2(S) and hence with

2 0 (L2(R+) <g> 77fc).
k=0

For/a function on Rn, define Wfon Rn-{0} by

(2.2) <%f(w) = \w\nl2f(w).

% is then an isometry of L2(Rn) onto L2(Rn-{0}). For

feL,(R»-{0})nL2(R"-{0})

define / on iR x S by

r<*> Av

(2-3) fit,0=      #,07
Jo x

The mapping/^/may be viewed as the tensor product of the identity mapping on

L2(S) with the group theoretic Fourier transform mapping integrable functions on

R+ to functions on the dual group R+ =iR. By the Plancherel theorem for locally

compact abelian groups, this tensor product of maps has a unique extension to a

mapping JÍ from 7_2(Ä+) ® L2(S) onto L2(iR) ® L2(S). Up to a scalar multiple,

Ji is an isometry which will be referred to as the Mellin transform on L2(Rn-{0}).

Let J be the unitary operator on 7_2(7fn-{0}) defined by (Jf)(x, f)=/(l/x, Ç).

Let & denote the Fourier transform on L2(Rn). For fie L,(Rn) n L2(Rn), &f is

defined by

(2-4) C^/Xw) = -^-2 ¿, /(zK""2 &•

Set SF = Jall&:ciu'-x and &=J(&J(-^. Then # and ^ are unitary operators on

L2(R+) ® 7,2(5) and L2(iR) <g> 7,2(5), respectively. The following lemma provides

the desired multiplicative analysis of IF.

Lemma 1. ForfeL2(iR) <g> 77fc (A: = 0, 1, 2,...),

(2.5) ^/(i, |) = wit, k)f(t, 0

where

.2-T((k+n/2-t)/2)
(2.6) w(t, k) = ik

Y((k + n/2+t)/2)

Proof. Let 99 be in 77fc (k = 0, 1,2,...) and g a C°° function on R+ with support

in a compact subset of the interval (0, 00). Since linear combinations of functions

of the form/=g<p are dense in 7_,2(Ä+) (g> Hk, it suffices to show that formula (2.5)

holds for the function J=Jtf. Let f=3'f. It follows from Theorem (2.6.1) in

Bochner [1, p. 38] that

(2.7) f(x, è) = ikg,(x)tp(0
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where

(2.8) gi(x) = \   g(yx)Jk+(n-2)i2(y) dy.
Jo

Set v=k+(n — 2)/2 for convenience in notation. /„ is the Bessel function of order v.

Now define

f °° dx      C °° f°° i/x
(2.9) gi(z)=\    x^(x)^= x*g(yx)Jv(y)dy^.

Jo X       Jo  Jo x

It can be readily verified that the integral in (2.9) converges absolutely for

Rez<v+1 and defines an analytic function in this domain. From Titchmarsh

[5, p. 182],

dx     2a-1T((v+a)/2)(no) r*v,oo^=
Jo x r((v-«+2)/2)

for -v<Rea<^. For \<Re z<v+l interchange of the order of integration in

(2.9) is valid and yields the result

nin .,,      2-T((H-l-z)/2)., ,
(2.11) gi(z)=    r((v+1+z)/2)   &)

where

dx[■<*> dx
g(z) =       xzg(x) —•

Jo x

Since both sides of (2.11 ) define analytic functions of z in the domain Re z < v +1,

the result remains valid for z=t e iR. Equation (2.5) now follows from (2.7) and

(2.11). This completes the proof of the lemma.

3. Mellin transforms of A and B operators. For s e iR, let B(s) be the unitary

operator on L2(Rn) defined by

B(s)f(w) = \w\ ~5f(w)   for w ± 0,

= 0 for w = 0,

and set A(s)=^r'1B(s)^r.

This section is devoted to establishing a multiplicative analysis of the operators

A(s) and B(s). Prior to this, estimates on the growth of the quotient of gamma

functions in Lemma 1 must be obtained.

Lemma 2. For ceR+ andz in the strip -c<Re z<c, define

r«c+z)/2)
F(c, z) =

r((c-z)/2)-

There exists a constant Csuch that whenever c>0,e>0 andz = x+iy with |x| <c—e,

then

(3.1) |F(c,z)| g Ce3M2-x(l+2\x\/e)\c + 2 + iy\x.
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Proof. The proof is modeled after the argument given by Kunze and Stein

[3, p. 758] to prove a similar result. From Stirling's formula, for a>0 and w = u

+ iv e C with \u\ <a,

,       V(a + w)        . ...      tx + W     . ...      a-W
logTST-Í = (a + W-\)log-- —(a —W —+) log-r-

(3.2) r(a-M')       V 1J     ea + W    V 2)     &a-W

-2w + i(2a-1) arg (a + iv) + 2w log |a + it;| +B(w)

where B(w) is a bounded function. For a>\ and |u| <a—%, routine estimates show

that

(3.3) |(a±W--£)log((a±w)/(a±ñO)| ú 2\u\.

It follows from (3.2) and (3.3) that there exists a constant C independent of a

such that

(3.4) |r(a + w)/r(a-w)|  ^ Ce6h"|a + /t)|2u    for |w|  < a-\.

Now let c>0, e>0 and z=x + iy with |x| <c—e. Replacing a by (c + 2)/2 and w by

z/2 in (3.4), we obtain the estimate

\F(c,z)\ =

(3.5)

c — z

<

c + z

c—z

c+z

F((c + 2 + z)/2)

Y((c + 2-z)/2)

c + 2 + iy
Ce3M Ú C(,+2H)e3|*l2-*|c+2+zy|

Lemma 3. Let s=o0 + irQ with \o0\< n/2 —e. Set Cn = C2e3n2n. For w as in Lemma 1,

Sup      \u>it + S,k)œit-S,k)\  Ú Cn(l+«/£)2(l+4/«|r0|)n'2.

Proof. From Lemma 2,

sup      \co(t + s, k)co(t-s, k)\ = sup \F(k + n/2, - s - t)F(k + n/2, s-t)\
keZ+ ;t = izeiR *.»

á Cn(l+«/£)2sup
k.x

¿ Cn(l+n/e)2sup

k + n/2 + i(r0-r)

k + n/2-i(T0 + T)

2|t0]
1 +

Iffnl

\k + n/2-ir\

èCn(l+n/e)2(l+4/n\r0\y'2.

Theorem 1. (1) s -> A(s)B(s) is a commutative family of operators for s e iR.

(2) There exists an operator-valued function s -*■ C(s) defined on  the strip

- n/2 < Re s < n/2 such that

C(s) = A(s)B(s)A(-s)B{-s)   for Re s = 0.

(3) ||C(s)||^Cn(l+«/e)2(l+4/«|Im s\y12 for e>0and |Res|<«/2-«.

Proof. Let B(s) and Ä(s) be the unitary operators on L2(iR) <g> L2(S) defined by

Bis) = (J^W)B(s)(Jf^)-\       Ä(s) = (JC^l)A(s)<-*w\-i
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It is easily checked that for fe L2(iR) eg) L2(S),

(3.6) B(s)f(t,0=f(ts,0,

(3.7) Ä(s) = ^-xB(-s)^.

From (3.6), (3.7) and Lemma 1, it follows that for/eL2(/Ä)® Hk(k = 0,1,2,...),

(3.8) A(s)B(s)f(t, O = Kr+í, k)/oj(t, k))f(t, i).

(1) is an immediate consequence of (3.8). Now for |Rej|<n/2, define C(s) on

L2(iR) ® 77fc by

(3.9) C(s)f(t, Í)
cu(?+j, &) cü(í-í, /t)

/(', Í).w(t, k)        œ(t, k)

From Lemma 3, the multiplier in (3.9) is a bounded function of t e iR and k e Z+

for each s in the strip |Res|<n/2. Hence (3.9) defines a bounded operator on

L2(iR) <g) L2(S). Clearly j -> ¿(i) is analytic. Defining C(j) = (^^')-1C>i(j)^^, we

obtain an analytic operator-valued function on L2(Rn) satisfying (2) and (3).

4. Construction of uniformly bounded representations for the Lorentz groups.

For B^l, define G = SOe(l, n + l) to be the connected component of the identity

in the group of (n + 2) x (n + 2) real matrices g for which tgp0g=Po where lg is the

transpose of g and

■0     0     r

Po=    0    -7n   0

.1      0      0.

The family of Lorentz groups is the collection {SOe(l, n+l) : n^l}. For n= 1, the

group SOe(l, 2) is locally isomorphic to 57.(2, R). Uniformly bounded representa-

tions of this group are constructed by Kunze and Stein [2]. A modified version of

the Mellin transform analysis used here applies to this group but yields no new

representations. We shall therefore assume n^2 in the remainder of this paper.

Let M, A, N and V he the subgroups of G defined as follows:

"x    0     0

A = < a = a(x)

M = <m = m(h) =

N = <u = u(w) =

h
0

0

h

0

0

1/x

0

0

1

xeR"

: h e SO(n, R)

w   %\w\

In

0

lW

1

weRlxn\

V = {v = v(w) = lu(w)}.
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Set B=MAN. For « odd, set /„= -7n and for « even, set

-1

/« =

1

-1

Now set

Pn =

0    0

0   /„

1    0    0

Throughout the following discussion, « will be fixed and we write J for /„ and p

for pn. Then p is a representative of the nontrivial element of the Weyl group for

the rank 1 semisimple Lie group G. 77 is a closed subgroup of G and by the Bruhat

Lemma, G=B u BpB=Bu BVp. SetB=p~1Bp. Then77 = MA Vand G=BvBpB.

The set 77 F is a dense set of full measure in G.

For s e iR, let T( ■, s ) be the unitary representation of G induced from the charac-

ter ma(x)u -> xs of 77. The family of representations T(-,s) is the class 1 principal

series of G. These representations may be realized as operators on L2(V) defined by

the formulae

(4.1)
Tig, s)Av) = xnl2 + sf(v-g)   if vg = (ma(x)u)(vg) e BV,

= 0 if vgfBV.

Since w -*■ viw) is a measure preserving homeomorphism of Rn onto V, we may

identify L2(V) with 7.2(7*") by writing/(w) for f(v(w)). Note that

(4.2) v(w)aix) = a(x)v(xw)   for all (x, w) e R+ x Rn

and

(4.3) viw)mih) = mih)viwh)   for all («, w) e SO(n, R) x Ä».

In (4.3) w« is to be interpreted as the product of the row matrix w and the orthog-

onal matrix «. From (4.1)-(4.3), it follows that the operators T(g, s) for g=

m(h)a(x)v(w0) e B are defined on L2(Rn) by

(4.4) T(m(h)a(x)v(wQ), s)f(w) = xnl2+sf(xwh + w0).

An easy matrix calculation shows that for vv^O,

viw)p = m(J-2twwJI\w\2)a(2/\w\2)u(-wJ)v(2wJ/\w\2).

For fie L2(Rn) it follows that

(4.5)
T(p, s)f(w) = (2/|w|2)n'2 + s/(2w//|w|2)   for w * 0,

= 0 if w = 0.
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Since G = B u BpB, the representation T(-,s) is completely determined by (4.4)

and (4.5). Now define R(-, s) = A(s)T(-, s)A(-s).

Lemma 4. R(-,s)\s = T(-,0)\s.

Proof. Since A(s) = ßr~1B(s)^r, it suffices to show that

(4.6) Bis)fig, s) = fig, 0)B(s)

for all g e S where fig, s)=^Tig, s)^'1. Let g=mih)aix)viw0). It follows easily

from (4.4) that

(4.7) fig, s)fiw) = x-ní2+séw°x-lwhfix-1wh).

Formula (4.6) is an immediate consequence of (4.7).

Lemma 5. A(2s)T(-,s) = T(-, -s)A(2s).

Proof. From (4.7) it follows easily that

B(2s)f(g, s) = f{g, -s)B(2s)   for all geB.

Hence it suffices to show that

(4.8) A(2s)TXj>, s) = Tip, -s)A(2s).

Let f(p, s) = (Jt%)T(p, s)(Jt<%)-\ For feL2(iR) cg> L2(S), it follows from (4.5)

that

(4.9) f(p, s)f(t, 0 = 2'"'/(2s-1, $J).

Note that if | -> g(¿¡) is a function in Hk, then f -> g($J) is also a function in 77fc.

Hence the subspaces L2(iR) ® Hk (k = 0, 1, 2,... ) are invariant under f(p, s).

From (2.5), (3.7) and (4.8), it follows that for feL2(iR) eg 77fc,

(4.10) Ä(2s)f(p, s)f = f(p, -s)Ä(2s)f.

Formula (4.8) now follows easily from (4.10).

Lemma 6. (1) R(-,s) = R(-, — s) for all s e iR.

(2) R(p, s) = A(s)B(s)A(-s)B(-s)T(p, 0)for all s e iR.

Proof. (1)

R(-,s) = A(s)T(-,s)A(-s) = A(-s)A(2s)T(-,s)A(-2s)A(s)

= A(-s)T(-,-s)A(s) = R(-,-s).

(2) Formula (4.5) implies that T(p, s) = 2sB(2s)T(p, 0). From Lemma 5 and the

fact that T(p, 0)2 is the identity, it follows that

(4.11) T(p, 0)A(-, -s)T(p, 0) = 2-°B(-s)A(-s)B(-s).

Hence

R(p, s) = 2*A(s)B(2s)T(p, 0)A(-s)T(p, 0)2

= Ais)Bis)Ai-s)Bi-s)Tip,0).
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Theorem 2. For each ge G, the function s -*■ R(g, s) initially defined for s e iR

has an extension to an analytic function on the strip D = {seC : |Re s | <«/2}. The

resulting operators R(g, s) have the property that R(g, s) = R(g, —s) for all g e G

and s e D. For all s e D, g -> R(g, s) is a uniformly bounded representation of G.

Proof. Let seD. For geB = MAV, define R(g, s) = T(g, 0). Define R(p, s)

= C(s)T(p,0) where C(s) is the operator-valued function defined in Theorem 1.

If g e G is of the form g = g,pg2 for g, and g2 in 77, set R(g, s) = R(g„ s)R(p, s)

R(g2, s)- By the preservation of functional equations under analytic continuation

and the fact that G=77 u BpB, it follows that the operators R(g, s) are well defined

for all geG and seD and satisfy the symmetry condition R(g,s) = R(g, —s).

Moreover, g -*■ R(g, s) is a representation of G for all s e D and s -> R(g, s) is

analytic for all geG. Since supseG \\R(g, s)\\ = \\R(p, s)\\ = ||C(s)||, the representa-

tions R(-, s) are uniformly bounded.
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