Tangential limits of functions orthogonal to invariant subspaces
HTML articles powered by AMS MathViewer
- by David Protas
- Trans. Amer. Math. Soc. 166 (1972), 163-172
- DOI: https://doi.org/10.1090/S0002-9947-1972-0293100-8
- PDF | Request permission
Abstract:
For any inner function $\varphi$, let ${M^ \bot }$ be the orthogonal complement of $\varphi {H^2}$, in ${H^2}$, where ${H^2}$ is the usual Hardy space. The relationship between the tangential convergence of all functions in ${M^ \bot }$ and the finiteness of certain sums and integrals involving $\varphi$ is studied. In particular, it is shown that the tangential convergence of all functions in ${M^ \bot }$ is a stronger condition than the tangential convergence of $\varphi$, itself.References
- P. R. Ahern and D. N. Clark, Radial limits and invariant subspaces, Amer. J. Math. 92 (1970), 332–342. MR 262511, DOI 10.2307/2373326
- P. R. Ahern and D. N. Clark, On functions orthogonal to invariant subspaces, Acta Math. 124 (1970), 191–204. MR 264385, DOI 10.1007/BF02394571
- G. T. Cargo, Angular and tangential limits of Blaschke products and their successive derivatives, Canadian J. Math. 14 (1962), 334–348. MR 136743, DOI 10.4153/CJM-1962-026-2
- Henry Helson, Lectures on invariant subspaces, Academic Press, New York-London, 1964. MR 0171178
- C. N. Linden and H. Somadasa, On tangential limits of Blaschke products, Arch. Math. (Basel) 18 (1967), 416–424. MR 233985, DOI 10.1007/BF01898836
- Herbert Meschkowski, Hilbertsche Räume mit Kernfunktion, Die Grundlehren der mathematischen Wissenschaften, Band 113, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1962 (German). MR 0140912, DOI 10.1007/978-3-642-94848-0
- David Protas, Tangential limits of Blaschke products and functions of bounded characteristic, Arch. Math. (Basel) 22 (1971), 631–641. MR 299798, DOI 10.1007/BF01222628
- Walter Rudin, Real and complex analysis, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0210528
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 166 (1972), 163-172
- MSC: Primary 30A72; Secondary 30A78
- DOI: https://doi.org/10.1090/S0002-9947-1972-0293100-8
- MathSciNet review: 0293100