Products of complexes and Fréchet spaces which are manifolds
HTML articles powered by AMS MathViewer
- by James E. West
- Trans. Amer. Math. Soc. 166 (1972), 317-337
- DOI: https://doi.org/10.1090/S0002-9947-1972-0293679-6
- PDF | Request permission
Abstract:
It is shown that if a locally finite-dimensional simplicial complex is given the “barycentric” metric, then its product with any Fréchet space X of suitably high weight is a manifold modelled on X, provided that X is homeomorphic to its countably infinite Cartesian power. It is then shown that if X is Banach, all paracompact X-manifolds may be represented (topologically) by such products.References
- R. D. Anderson, Topological properties of the Hilbert cube and the infinite product of open intervals, Trans. Amer. Math. Soc. 126 (1967), 200–216. MR 205212, DOI 10.1090/S0002-9947-1967-0205212-3
- R. D. Anderson and R. H. Bing, A complete elementary proof that Hilbert space is homeomorphic to the countable infinite product of lines, Bull. Amer. Math. Soc. 74 (1968), 771–792. MR 230284, DOI 10.1090/S0002-9904-1968-12044-0 W. Barit, Small extensions of small homeomorphisms, Notices Amer. Math. Soc. 16 (1969), 295. Abstract #663-715.
- Robert G. Bartle and Lawrence M. Graves, Mappings between function spaces, Trans. Amer. Math. Soc. 72 (1952), 400–413. MR 47910, DOI 10.1090/S0002-9947-1952-0047910-X
- C. Bessaga, Topological equivalence of unseparable reflexive Banach spaces. Ordinal resolutions of identity and monotone bases, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 15 (1967), 397–399 (English, with Russian summary). MR 221269
- Czesław Bessaga and Victor Klee, Every non-normable Frechet space is homeomorphic with all of its closed convex bodies, Math. Ann. 163 (1966), 161–166. MR 201949, DOI 10.1007/BF02052848
- C. Bessaga and A. Pełczyński, Some remarks on homeomorphisms of $F$-spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 10 (1962), 265–270. MR 139917
- C. Bessaga and A. Pełczyński, The estimated extension theorem, homogeneous collections and skeletons, and their applications to the topological classification of linear metric spaces and convex sets, Fund. Math. 69 (1970), 153–190. MR 273347, DOI 10.4064/fm-69-2-153-190
- C. H. Dowker, Topology of metric complexes, Amer. J. Math. 74 (1952), 555–577. MR 48020, DOI 10.2307/2372262
- David W. Henderson, Infinite-dimensional manifolds are open subsets of Hilbert space, Topology 9 (1970), 25–33. MR 250342, DOI 10.1016/0040-9383(70)90046-7
- David W. Henderson, Open subsets of Hilbert space, Compositio Math. 21 (1969), 312–318. MR 251748
- David W. Henderson, Stable classification of infinite-dimensional manifolds by homotopy-type, Invent. Math. 12 (1971), 48–56. MR 290413, DOI 10.1007/BF01389826
- V. L. Klee Jr., Some topological properties of convex sets, Trans. Amer. Math. Soc. 78 (1955), 30–45. MR 69388, DOI 10.1090/S0002-9947-1955-0069388-5
- Arthur H. Kruse, Badly incomplete normed linear spaces, Math. Z. 83 (1964), 314–320. MR 166586, DOI 10.1007/BF01111164
- Ernest Michael, Continuous selections. I, Ann. of Math. (2) 63 (1956), 361–382. MR 77107, DOI 10.2307/1969615
- Richard S. Palais, Homotopy theory of infinite dimensional manifolds, Topology 5 (1966), 1–16. MR 189028, DOI 10.1016/0040-9383(66)90002-4
- Helmut H. Schaefer, Topological vector spaces, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1966. MR 0193469
- H. Toruńczyk, Skeletonized sets in complete metric spaces and homeomorphisms of the Hilbert cube, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 18 (1970), 119–126 (English, with Russian summary). MR 264602
- S. Weingram, On the triangulation of the realization of a semisimplical complex, Illinois J. Math. 12 (1968), 403–413. MR 238303, DOI 10.1215/ijm/1256054108
- James E. West, Infinite products which are Hilbert cubes, Trans. Amer. Math. Soc. 150 (1970), 1–25. MR 266147, DOI 10.1090/S0002-9947-1970-0266147-3
- J. H. C. Whitehead, Combinatorial homotopy. I, Bull. Amer. Math. Soc. 55 (1949), 213–245. MR 30759, DOI 10.1090/S0002-9904-1949-09175-9
- J. H. C. Whitehead, A certain exact sequence, Ann. of Math. (2) 52 (1950), 51–110. MR 35997, DOI 10.2307/1969511
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 166 (1972), 317-337
- MSC: Primary 58B05
- DOI: https://doi.org/10.1090/S0002-9947-1972-0293679-6
- MathSciNet review: 0293679