Simple modules and centralizers
HTML articles powered by AMS MathViewer
- by John Dauns
- Trans. Amer. Math. Soc. 166 (1972), 457-477
- DOI: https://doi.org/10.1090/S0002-9947-1972-0294387-8
- PDF | Request permission
Abstract:
A class of modules generalizing the simple ones is constructed. Submodule structure and centralizers of quotient modules are completely determined. The above class of modules is used to study the primitive ideal structure of the tensor products of algebras.References
- John Dauns, Chains of modules with completely reducible quotients, Pacific J. Math. 17 (1966), 235–242. MR 200302, DOI 10.2140/pjm.1966.17.235
- John Dauns, Multiplier rings and primitive ideals, Trans. Amer. Math. Soc. 145 (1969), 125–158. MR 257151, DOI 10.1090/S0002-9947-1969-0257151-1
- John Dauns, Categorical $W^{\ast }$-tensor product, Trans. Amer. Math. Soc. 166 (1972), 439–456. MR 295093, DOI 10.1090/S0002-9947-1972-0295093-6
- Kent R. Fuller, Double centralizers of injectives and projectives over artinian rings, Illinois J. Math. 14 (1970), 658–664. MR 268217
- Kent R. Fuller, On indecomposable injectives over artinian rings, Pacific J. Math. 29 (1969), 115–135. MR 246917, DOI 10.2140/pjm.1969.29.115
- Manabu Harada and Teruo Kanzaki, On Kronecker products of primitive algebras, J. Inst. Polytech. Osaka City Univ. Ser. A 9 (1958), 19–28. MR 100615
- Nathan Jacobson, Structure of rings, Revised edition, American Mathematical Society Colloquium Publications, Vol. 37, American Mathematical Society, Providence, R.I., 1964. MR 0222106
- Kiiti Morita, On algebras for which every faithful representation is its own second commutator, Math. Z. 69 (1958), 429–434. MR 126492, DOI 10.1007/BF01187420
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 166 (1972), 457-477
- MSC: Primary 16A64
- DOI: https://doi.org/10.1090/S0002-9947-1972-0294387-8
- MathSciNet review: 0294387