## A unified approach to uniform real approximation by polynomials with linear restrictions

HTML articles powered by AMS MathViewer

- by Bruce L. Chalmers
- Trans. Amer. Math. Soc.
**166**(1972), 309-316 - DOI: https://doi.org/10.1090/S0002-9947-1972-0294962-0
- PDF | Request permission

## Abstract:

Problems concerning approximation of real-valued continuous functions of a real variable by polynomials of degree smaller than*n*with various linear restrictions have been studied by several authors. This paper is an attempt to provide a unified approach to these problems. In particular, the notion of restricted derivatives approximation is seen to fit into the theory and includes as special cases the notions of monotone approximation and restricted range approximation. Also bounded coefficients approximation, $\varepsilon$-interpolator approximation, and polynomial approximation with interpolation fit into our scheme.

## References

- K. Atkinson and A. Sharma,
*A partial characterization of poised Hermite-Birkhoff interpolation problems*, SIAM J. Numer. Anal.**6**(1969), 230–235. MR**264828**, DOI 10.1137/0706021 - Charles B. Dunham,
*Chebyshev aproximation with respect to a weight function*, J. Approximation Theory**2**(1969), 223–232. MR**252922**, DOI 10.1016/0021-9045(69)90016-1 - David Ferguson,
*The question of uniqueness for G. D. Birkhoff interpolation problems*, J. Approximation Theory**2**(1969), 1–28. MR**247331**, DOI 10.1016/0021-9045(69)90028-8
M. A. Griesel, - H. L. Loeb, D. G. Moursund, L. L. Schumaker, and G. D. Taylor,
*Uniform generalized weight function polynomial approximation with interpolation*, SIAM J. Numer. Anal.**6**(1969), 284–293. MR**250441**, DOI 10.1137/0706026 - G. G. Lorentz and K. L. Zeller,
*Monotone approximation by algebraic polynomials*, Trans. Amer. Math. Soc.**149**(1970), 1–18. MR**285843**, DOI 10.1090/S0002-9947-1970-0285843-5
R. A. Lorentz, - David G. Moursund,
*Chebyshev approximation using a generalized weight function*, SIAM J. Numer. Anal.**3**(1966), 435–450. MR**204936**, DOI 10.1137/0703038 - T. J. Rivlin and H. S. Shapiro,
*A unified approach to certain problems of approximation and minimization*, J. Soc. Indust. Appl. Math.**9**(1961), 670–699. MR**133636**, DOI 10.1137/0109056 - John A. Roulier,
*Monotone approximation of certain classes of functions*, J. Approximation Theory**1**(1968), 319–324. MR**236580**, DOI 10.1016/0021-9045(68)90009-9 - John A. Roulier and G. D. Taylor,
*Uniform approximation by polynomials having bounded coefficients*, Abh. Math. Sem. Univ. Hamburg**36**(1971), 126–135. MR**336177**, DOI 10.1007/BF02995915 - I. J. Schoenberg,
*On Hermite-Birkhoff interpolation*, J. Math. Anal. Appl.**16**(1966), 538–543. MR**203307**, DOI 10.1016/0022-247X(66)90160-0 - O. Shisha,
*Monotone approximation*, Pacific J. Math.**15**(1965), 667–671. MR**185334**, DOI 10.2140/pjm.1965.15.667 - G. D. Taylor,
*On approximation by polynomials having restricted ranges*, SIAM J. Numer. Anal.**5**(1968), 258–268. MR**252927**, DOI 10.1137/0705022 - G. D. Taylor,
*Approximation by functions having restricted ranges. III*, J. Math. Anal. Appl.**27**(1969), 241–248. MR**257611**, DOI 10.1016/0022-247X(69)90045-6

*Uniform approximation with respect to a general error function*, Doctoral Dissertation, University of California, Riverside, Calif., 1971.

*Uniqueness of approximation by monotone polynomials*(to appear).

## Bibliographic Information

- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**166**(1972), 309-316 - MSC: Primary 41A50
- DOI: https://doi.org/10.1090/S0002-9947-1972-0294962-0
- MathSciNet review: 0294962