Categorical $W^{\ast }$-tensor product
HTML articles powered by AMS MathViewer
- by John Dauns
- Trans. Amer. Math. Soc. 166 (1972), 439-456
- DOI: https://doi.org/10.1090/S0002-9947-1972-0295093-6
- PDF | Request permission
Abstract:
If A and B are von Neumann algebras and $A\bar \otimes B$ denotes their categorical ${C^ \ast }$-tensor product with the universal property, then the von Neumann tensor product $A\nabla B$ of A and B is defined as \[ A\nabla B = {(A\bar \otimes B)^{ \ast \ast }}/J,\] where $J \subset {(A\bar \otimes B)^{\ast \ast }}$ is an appropriate ideal. It has the universal property.References
- John Dauns and Karl Heinrich Hofmann, Representation of rings by sections, Memoirs of the American Mathematical Society, No. 83, American Mathematical Society, Providence, R.I., 1968. MR 0247487
- John Dauns and Karl Heinrich Hofmann, Spectral theory of algebras and adjunction of identity, Math. Ann. 179 (1969), 175–202. MR 247468, DOI 10.1007/BF01358486
- John Dauns, Multiplier rings and primitive ideals, Trans. Amer. Math. Soc. 145 (1969), 125–158. MR 257151, DOI 10.1090/S0002-9947-1969-0257151-1
- Jacques Dixmier, Les $C^{\ast }$-algèbres et leurs représentations, Cahiers Scientifiques, Fasc. XXIX, Gauthier-Villars Éditeur, Paris, 1969 (French). Deuxième édition. MR 0246136
- Pierre Eymard, L’algèbre de Fourier d’un groupe localement compact, Bull. Soc. Math. France 92 (1964), 181–236 (French). MR 228628, DOI 10.24033/bsmf.1607 A. Guichardet, Tensor products of ${C^ \ast }$-algebras. Part I: Finite tensor products, Lecture Note Series, no. 12, Matematisk Institut, Aarhus Universitet, 1969. —, Tensor products of ${C^ \ast }$-algebras. Part II: Finite tensor products, Lecture Note Series, no. 13, Matematisk Institut, Aarhus Universitet, 1969.
- K. H. Hofmann, The duality of compact semigroups and $C^*$-bigebras, Lecture Notes in Mathematics, Vol. 129, Springer-Verlag, Berlin-New York, 1970. MR 0432803, DOI 10.1007/BFb0071210
- Yosinao Misonou, On the direct product of $W^*$-algebras, Tohoku Math. J. (2) 6 (1954), 189–204. MR 70064, DOI 10.2748/tmj/1178245179 S. Sakai, The theory of ${W^\ast }$-algebras, Lecture Notes, Yale University, New Haven, Conn., 1962.
- Robert Schatten, A Theory of Cross-Spaces, Annals of Mathematics Studies, No. 26, Princeton University Press, Princeton, N. J., 1950. MR 0036935
- Robert Schatten, Norm ideals of completely continuous operators, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 27, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960. MR 0119112, DOI 10.1007/978-3-642-87652-3
- Moss E. Sweedler, Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969. MR 0252485
- Zirô Takeda, On the representations of operator algebras, Proc. Japan Acad. 30 (1954), 299–304. MR 63579 —, On the representations of operator algebras. II, Tôhoku Math. J. (2) 6 (1954), 212-219. MR 16, 1126.
- Zirô Takeda, Conjugate spaces of operator algebras, Proc. Japan Acad. 30 (1954), 90–95. MR 63578
- Masamichi Takesaki, On the conjugate space of operator algebra, Tohoku Math. J. (2) 10 (1958), 194–203. MR 100799, DOI 10.2748/tmj/1178244713
- Masamichi Takesaki, On the cross-norm of the direct product of $C^{\ast }$-algebras, Tohoku Math. J. (2) 16 (1964), 111–122. MR 165384, DOI 10.2748/tmj/1178243737
- Takasi Turumaru, On the direct-product of operator algebras. I, Tohoku Math. J. (2) 4 (1952), 242–251. MR 54859, DOI 10.2748/tmj/1178245371
- Aubrey Wulfsohn, Produit tensoriel de $C^{\ast }$-algèbres. lière partie, Bull. Sci. Math. (2) 87 (1963), no. lière partie, 13–27 (French). MR 167855
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 166 (1972), 439-456
- MSC: Primary 46L10; Secondary 46M05
- DOI: https://doi.org/10.1090/S0002-9947-1972-0295093-6
- MathSciNet review: 0295093