Slicing theorems for $n$-spheres in Euclidean $(n+1)$-space
HTML articles powered by AMS MathViewer
- by Robert J. Daverman
- Trans. Amer. Math. Soc. 166 (1972), 479-489
- DOI: https://doi.org/10.1090/S0002-9947-1972-0295356-4
- PDF | Request permission
Abstract:
This paper describes conditions on the intersection of an n-sphere $\Sigma$ in Euclidean $(n + 1)$-space ${E^{n + 1}}$ with the horizontal hyperplanes of ${E^{n + 1}}$ sufficient to determine that the sphere be nicely embedded. The results generally are pointed towards showing that the complement of $\Sigma$ is 1-ULC (uniformly locally 1-connected) rather than towards establishing the stronger property that $\Sigma$ is locally flat. For instance, the main theorem indicates that ${E^{n + 1}} - \Sigma$ is 1-ULC provided each non-degenerate intersection of $\Sigma$ and a horizontal hyperplane be an $(n - 1)$-sphere bicollared both in that hyperplane and in $\Sigma$ itself $(n \ne 4)$.References
- J. W. Alexander, On the subdivision of 3-space by a polyhedron, Proc. Nat. Acad. Sci. U.S.A. 10 (1924), 6-8.
R. H. Bing, ${E^3}$ does not contain uncountably many mutually exclusive surfaces, Bull. Amer. Math. Soc. 63 (1957), 404. Abstract #60-801t.
- R. H. Bing, Pushing a 2-sphere into its complement, Michigan Math. J. 11 (1964), 33β45. MR 160194
- J. L. Bryant, Concerning uncountable families of $n$-cells in $E^{n}$, Michigan Math. J. 15 (1968), 477β479. MR 238285, DOI 10.1307/mmj/1029000104
- J. L. Bryant, On embeddings with locally nice cross-sections, Trans. Amer. Math. Soc. 155 (1971), 327β332. MR 276983, DOI 10.1090/S0002-9947-1971-0276983-6 β, Euclidean n-space modulo an $(n - 1)$-cell (to appear).
- James W. Cannon, $^{\ast }$-taming sets for crumpled cubes. II. Horizontal sections in closed sets, Trans. Amer. Math. Soc. 161 (1971), 441β446. MR 282354, DOI 10.1090/S0002-9947-1971-0282354-9
- J. Cheeger and J. M. Kister, Counting topological manifolds, Topology 9 (1970), 149β151. MR 256399, DOI 10.1016/0040-9383(70)90036-4
- Robert Craggs, Small ambient isotopies of a $3$-manifold which transform one embedding of a polyhedron into another, Fund. Math. 68 (1970), 225β256. MR 275440, DOI 10.4064/fm-68-3-225-256
- C. H. Dowker, Mapping theorems for non-compact spaces, Amer. J. Math. 69 (1947), 200β242. MR 20771, DOI 10.2307/2371848
- W. T. Eaton, Cross sectionally simple spheres, Bull. Amer. Math. Soc. 75 (1969), 375β378. MR 239600, DOI 10.1090/S0002-9904-1969-12180-4
- Norman Hosay, A proof of the slicing theorem for $2$-spheres, Bull. Amer. Math. Soc. 75 (1969), 370β374. MR 239599, DOI 10.1090/S0002-9904-1969-12178-6
- R. A. Jensen, Cross sectionally connected $2$-spheres are tame, Bull. Amer. Math. Soc. 76 (1970), 1036β1038. MR 270352, DOI 10.1090/S0002-9904-1970-12548-4
- J. M. Kister, Isotopies in $3$-manifolds, Trans. Amer. Math. Soc. 97 (1960), 213β224. MR 120628, DOI 10.1090/S0002-9947-1960-0120628-5
- L. D. Loveland, Cross sectionally continuous spheres in $E^{3}$, Bull. Amer. Math. Soc. 75 (1969), 396β397. MR 239601, DOI 10.1090/S0002-9904-1969-12191-9
- C. L. Seebeck III, Collaring and $(n-1)$-manifold in an $n$-manifold, Trans. Amer. Math. Soc. 148 (1970), 63β68. MR 258045, DOI 10.1090/S0002-9947-1970-0258045-6
- Raymond Louis Wilder, Topology of manifolds, American Mathematical Society Colloquium Publications, Vol. XXXII, American Mathematical Society, Providence, R.I., 1963. MR 0182958
- Perrin Wright, A uniform generalized Schoenflies theorem, Bull. Amer. Math. Soc. 74 (1968), 718β721. MR 229225, DOI 10.1090/S0002-9904-1968-12011-7
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 166 (1972), 479-489
- MSC: Primary 57A35
- DOI: https://doi.org/10.1090/S0002-9947-1972-0295356-4
- MathSciNet review: 0295356