On inverse scattering for the Klein-Gordon equation
HTML articles powered by AMS MathViewer
- by Tomas P. Schonbek
- Trans. Amer. Math. Soc. 166 (1972), 101-123
- DOI: https://doi.org/10.1090/S0002-9947-1972-0298476-3
- PDF | Request permission
Abstract:
A scattering operator $S = S(V)$ is set up for the Klein-Gordon equation $\square u = {m^2}u(m > 0)$ perturbed by a linear potential $V = V(x)$ to $\square u = {m^2}u + Vu$. It is found that for each $R > 0$ there exists a constant $c(R)$ (of order ${R^{2 - n}}$ as $R \to + \infty$, n = space dimension) such that if the ${L_1}$ and the ${L_q}$ norm of V and $V’$ are bounded by $c(R),V’ - V$ is either nonnegative or nonpositive, and $V’ - V$ is of compact support having diameter $\leqq R$, then $S(V’) \ne S(V)$ or $V’ = V$. Here $q > n/2$, and $c(R)$ may also depend on q.References
- Lipman Bers, Fritz John, and Martin Schechter, Partial differential equations, Lectures in Applied Mathematics, vol. 3, American Mathematical Society, Providence, R.I., 1979. With supplements by Lars Gȧrding and A. N. Milgram; With a preface by A. S. Householder; Reprint of the 1964 original. MR 598466
- John M. Chadam, The asymptotic behavior of the Klein-Gordon equation with external potential, J. Math. Anal. Appl. 31 (1970), 334–348. MR 262882, DOI 10.1016/0022-247X(70)90029-6
- Antonio Degasperis, On the inverse problem for the Klein-Gordon $s$-wave equation, J. Mathematical Phys. 11 (1970), 551–567. MR 256668, DOI 10.1063/1.1665170 A. Erdélyi, W. Magnus, F. Oberhettinger and F. G. Tricomi, Higher transcendental functions. Vol. 2, McGraw-Hill, New York, 1953. MR 15, 419.
- Tosio Kato, Perturbation theory for linear operators, Die Grundlehren der mathematischen Wissenschaften, Band 132, Springer-Verlag New York, Inc., New York, 1966. MR 0203473
- Peter D. Lax and Ralph S. Phillips, Scattering theory, Pure and Applied Mathematics, Vol. 26, Academic Press, New York-London, 1967. MR 0217440
- Stuart Nelson, On some solutions to the Klein-Gordon equation related to an integral of Sonine, Trans. Amer. Math. Soc. 154 (1971), 227–237. MR 415049, DOI 10.1090/S0002-9947-1971-0415049-9
- Roger G. Newton, Scattering theory of waves and particles, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0221823
- E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469, DOI 10.1017/CBO9780511608759
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 166 (1972), 101-123
- MSC: Primary 47F05; Secondary 35L05
- DOI: https://doi.org/10.1090/S0002-9947-1972-0298476-3
- MathSciNet review: 0298476