ZEROS OF PARTIAL SUMS AND REMAINDERS OF POWER SERIES

BY

J. D. BUCKHOLTZ AND J. K. SHAW

Abstract. For a power series $f(z) = \sum_{k=0}^{\infty} a_k z^k$ let $s_n(f)$ denote the maximum modulus of the zeros of the nth partial sum of f and let $r_n(f)$ denote the smallest modulus of a zero of the nth normalized remainder $\sum_{k=n}^{\infty} a_k z^{k-n}$. The present paper investigates the relationships between the growth of the analytic function f and the behavior of the sequences $(s_n(f))$ and $(r_n(f))$. The principal growth measure used is that of R-type: if $R = \{R_n\}$ is a nondecreasing sequence of positive numbers such that $\lim (R_{n+1}/R_n) = 1$, then the R-type of f is $\tau(f) = \limsup |a_n R_1 R_2 \cdots R_n|^{1/n}$. We prove that there is a constant P such that

$$\tau_n(f) \liminf (s_n(f)/R_n) \leq P \quad \text{and} \quad \tau_n(f) \limsup (r_n(f)/R_n) \leq (1/P)$$

for functions f of positive finite R-type. The constant P cannot be replaced by a smaller number in either inequality; P is called the power series constant.

1. Introduction. The following theorem is a consequence of results of the first author [3] and J. L. Frank [4].

Theorem A. Let $f(z) = \sum_{k=0}^{\infty} a_k z^k$ have radius of convergence $c(f)$, $0 < c(f) < \infty$. There exists an absolute constant P such that, if $\varepsilon > 0$, then

(i) infinitely many of the partial sums

$$S_n(f; z) = \sum_{k=0}^{n} a_k z^k \quad (n = 1, 2, 3, \ldots)$$

have all their zeros in the disc $|z| \leq c(f)(P + \varepsilon)$;

(ii) infinitely many of the normalized remainders

$$\mathcal{S}_n(f) = \sum_{k=n}^{\infty} a_k z^{k-n} \quad (n = 0, 1, 2, \ldots)$$

have no zero in the disc $|z| \leq c(f)(P + \varepsilon)^{-1}$;

(iii) the constant P cannot be replaced by a smaller number in either (i) or (ii).

In view of (iii), the constant P is uniquely determined by Theorem A. We call P the power series constant; its numerical value is known to lie between 1.7818 and

Presented to the Society, January 23, 1970 under the title Partial sums and remainders of power series; received by the editors May 4, 1971.

AMS 1970 subject classifications. Primary 30A08, 30A10; Secondary 30A06.

Key words and phrases. The power series constant, zeros of partial sums, zeros of remainders, R-type, entire functions, extremal functions.

Copyright © 1972, American Mathematical Society

269
Our object in the present paper is to give a simpler proof of Theorem A, to investigate the extremal functions associated with it, and to obtain corresponding results for various classes of entire functions.

For \(f(z) = \sum_{k=0}^{\infty} a_k z^k \), let \(s_n = s_n(f) \) denote the largest of the moduli of the zeros of \(S_n(f; z) = \sum_{k=0}^{n} a_k z^k \) \((n = 1, 2, 3, \ldots)\) with the convention that \(s_n = \infty \) if \(a_n = 0 \).

Let \(r_n = r_n(f) \) denote the supremum of numbers \(r \) such that \(\sum_{n=0}^{\infty} a_k z^{k-r} \) is analytic and has no zero in the disc \(|z| < r \). Theorem A is equivalent to the estimates

\[
\liminf_{n \to \infty} s_n(f) \leq c(f) P,
\]

\[
\limsup_{n \to \infty} r_n(f) \geq \frac{c(f)}{P},
\]

for \(0 < c(f) < \infty \), together with the assertion that the constant \(P \) is best possible in both cases.

Okada [6] has shown that \(\limsup_{n \to \infty} s_n(f) = \infty \) if and only if \(f \) is entire. For entire \(f \), M. Tsuji [6] proved the surprising result that

\[
\log n \leq \limsup_{n \to \infty} s_n(f)
\]

is always equal to the order of \(f \). For functions of positive finite order and type, we are able to sharpen Tsuji's theorem considerably.

Theorem B. Suppose the entire function \(f \) is of order \(\rho \) and type \(\tau \), \(0 < \rho, \tau < \infty \). Then

\[
\limsup_{n \to \infty} \left(\frac{\rho \tau}{n} \right)^{1/\rho} r_n(f) \geq \frac{1}{P}
\]

and

\[
e^{-1/\rho} \leq \liminf_{n \to \infty} \left(\frac{\rho \tau}{n} \right)^{1/\rho} s_n(f) \leq P.
\]

Furthermore, for each of the three inequalities, there exists an \(f \) of order \(\rho \) and type \(\tau \) for which equality is assumed.

Both Theorem A and Theorem B are special cases of a result involving a more general measure of growth for analytic functions. Let \(R = (R_n)_{n=1}^{\infty} \) be a non-decreasing sequence of positive numbers such that \(\lim_{n \to \infty} R_{n+1}/R_n = 1 \). The \(R \)-type, \(\tau_R(f) \), of an analytic function \(f(z) = \sum_{k=0}^{\infty} a_k z^k \) is defined to be

\[
\tau_R(f) = \limsup_{n \to \infty} |a_n R_1 R_2 \cdots R_n|^{1/n}.
\]

If \(R_n \to \infty \) as \(n \to \infty \), \(R \)-type can be related to the growth of the maximum modulus of \(f \) [1, p. 6]. It follows easily from the expression for the type of an entire function in terms of its coefficients that \(f \) is of order \(\rho \) and type \(\tau \), \(0 < \rho, \tau < \infty \), if and only if
Our principal result is the following.

Theorem C. If \(0 < \tau_R(f) < \infty \), then

\[
\liminf_{n \to \infty} \left(\frac{R_1 R_2 \cdots R_n}{R_n} \right)^{1/n} \leq \tau_R(f) \liminf_{n \to \infty} \frac{r_n(f)}{R_n} \leq P
\]

and

\[
\tau_R(f) \limsup_{n \to \infty} \frac{r_n(f)}{R_n} \geq \frac{1}{P}.
\]

Furthermore, for each of the three inequalities, there exists a function of \(R \)-type 1 for which equality is assumed.

If one takes \(R_n = 1 \), Theorem C reduces to Theorem A. If one takes \(R_n = (n/\rho)^{1/\sigma} \), then Theorem C reduces to Theorem B.

Suppose \(0 < c(f) < \infty \) and \(\varepsilon > 0 \). In 1906, M. B. Porter [5] proved that an infinite sequence of the partial sums of \(f \) tends uniformly to \(\infty \) outside the disc \(|z| \leq c(f)(2 + \varepsilon) \). In view of Theorem A, the constant 2 in Porter’s theorem cannot be replaced by a number less than \(P \). We prove in §2 that the best possible constant for Porter’s theorem is \(P \). This follows fairly easily from a theorem on the partial sums of polynomials which is of some interest in itself.

Theorem D. Let \(Q(z) = a_0 + a_1 z + \cdots + a_n z^n \) be a polynomial of degree \(n \). Then for at least one integer \(k \), \(0 \leq k \leq n \), we have

\[
|a_0 + a_1 z + \cdots + a_k z^k| \geq |a_n| |z|^k/(n+1)
\]

for all \(|z| \geq P \).

Theorem D guarantees that the partial sum \(a_0 + a_1 z + \cdots + a_k z^k \) has all its zeros in the disc \(|z| \leq P \). Since (1.7) holds for large \(|z| \), we must have

\[
|a_k| \geq |a_n|/(n+1).
\]

In applications, this yields information about the value of \(k \) for which (1.7) holds.

2. **The remainder polynomials.** The treatment of the power series constant in [3] and [4] involves the *remainder polynomials* \(B_n(z; z_0, z_1, \ldots, z_{n-1}) \), defined recursively by

\[
B_0(z) = 1,
\]

\[
B_n(z; z_0, z_1, \ldots, z_{n-1}) = z^n - \sum_{k=0}^{n-1} z_k^{n-k} B_k(z; z_0, z_1, \ldots, z_{k-1}).
\]

Let

\[
H_n = \max |B_n(0; z_0, \ldots, z_{n-1})|,
\]
where the maximum is taken over all sequences \{z_k\}_{k=0}^n whose terms lie on \(|z|=1\). Buckholtz [3] proved that

\[P = \lim_{n \to \infty} H_n^{1/n} = \sup_{1 \leq n < \infty} H_n^{1/n}. \]

For a power series \(f(z) = \sum_{k=0}^\infty a_k z^k \), we write (2.1) in the form

\[z^n = \sum_{k=0}^n z_k^{-n-k} B_k(z; z_0, \ldots, z_{k-1}) \]

and substitute this expression into the power series for \(f \). We obtain the formal expansion

\[
\begin{aligned}
f(z) &= \sum_{n=0}^\infty a_n z^n = \sum_{n=0}^\infty a_n \left\{ \sum_{k=0}^n z_k^{-n-k} B_k(z; z_0, \ldots, z_{k-1}) \right\} \\
&= \sum_{k=0}^\infty B_k(z; z_0, \ldots, z_{k-1}) \sum_{n=k}^\infty a_n z_k^{-n-k} = \sum_{k=0}^\infty \mathcal{S}^k f(z_k) B_k(z; z_0, \ldots, z_{k-1}),
\end{aligned}
\]

which holds whenever the interchange in the order of summation can be justified. In particular, (2.2) holds if \(f \) is a polynomial and yields considerable information when \(f \) is taken to be a remainder polynomial. In the latter case, an easy induction argument establishes the identity

\[B_n(z; z_0, \ldots, z_{n-1}) = B_{n-k}(z; z_k, \ldots, z_{n-1}), \quad 0 \leq k \leq n, \]

for the remainder polynomials also satisfy the following properties:

\begin{align*}
(2.4) & \quad B_k(\lambda z; \lambda z_0, \ldots, \lambda z_{n-1}) = \lambda^n B_k(z; z_0, \ldots, z_{n-1}), \\
(2.5) & \quad B_k(z_0, z_0, \ldots, z_{n-1}) = 0, \\
(2.6) & \quad z^n B_n(1/z; z_0, \ldots, z_1) = \sum_{k=0}^n B_k(0; z_k, \ldots, z_1) z^k, \\
(2.7) & \quad B_n(z; z_n, \ldots, z_1) = \sum_{k=0}^n B_k(0; z_k, \ldots, z_1) B_{n-k}(z; z_n, \ldots, z_{n+1}, 0, \ldots, 0) \text{ for } 0 \leq n_1 \leq n, \\
(2.8) & \quad H_{m+n} = H_m H_n \text{ for nonnegative integers } m \text{ and } n.
\end{align*}

The proofs of these identities may be found in [3].

We are now ready to prove Theorem D. Thus let \(Q(z) = a_0 + a_1 z + \cdots + a_n z^n \) be a polynomial of degree \(n \). Define \(f(z) = z^n Q(1/z) = b_0 + b_1 z + \cdots + b_n z^n \); note that \(b_{n-k} = a_k, 0 \leq k \leq n \). Let \(\{z_j\}_{j=0}^\infty \) be a sequence of complex numbers satisfying

\[|S^j f(z_j)| = \min_{|z| \leq 1/P} |S^j f(z)|, \quad 0 \leq j \leq n. \]

From (2.2),

\[|f(0)| \leq \sum_{k=0}^n |S^k f(z_k)| |B_k(0; z_0, \ldots, z_{k-1})|. \]

Setting \(w_k = P z_k, 0 \leq k \leq n \), we have \(|w_k| \leq 1|P| \) and, by (2.4),

\[
\begin{aligned}
|B_k(0; z_0, \ldots, z_{k-1})| &= |B_k(0; w_0/P, \ldots, w_{k-1}/P)| \\
&= (1/P^k) |B_k(0; w_0, \ldots, w_{k-1})| \leq (1/P^k) H_k \leq 1,
\end{aligned}
\]
for $0 \leq k \leq n$. Hence $|f(0)| \leq \sum_{k=0}^{\infty} |S^k f(z_k)|$ and so $|f(0)| \leq (n+1)|S^n f(z_m)|$ for some m, $0 \leq m \leq n$. Since $f(0) = b_0$, we have $|S^n f(z)| \leq |b_0|/(n+1)$ for all $|z| \leq 1/P$. Now

$$S^n f(z) = b_m + b_{m+1}z + \cdots + b_n z^{n-m}$$

and therefore, replacing z by $1/z$, we obtain

$$|b_m z^{n-m} + b_{m+1} z^{n-m-1} + \cdots + b_n| \geq |z|^{n-m}|b_0|/(n+1)$$

for all $|z| \geq P$. Letting $p = n - m$, this inequality is equivalent to

$$|a_0 + a_1 z + \cdots + a_p z^p| \geq |z|^p|a_n|/(n+1)$$

for all $|z| \geq P$, and this completes the proof.

Corollary 1. Suppose that the power series $\sum_{k=0}^{\infty} a_k z^k$ has radius of convergence less than 1. Then there are infinitely many integers k such that

$$|\sum_{j=0}^{k} a_j z^j| \geq |z|^k$$

for all $|z| \geq P$.

Proof. For each positive integer n such that $a_n \neq 0$, let $k(n)$ denote the least positive integer k for which (1.7) holds. The condition $\limsup |a_n|^{1/n} > 1$ implies that there is an infinite set I of positive integers such that $|a_n|/(n+1) > n$ for all $n \in I$. For each $n \in I$ we therefore have $|\sum_{j=0}^{k(n)} a_j z^j| \geq |z|^{k(n)}$ and, by (1.8), $|a_{k(n)}| \geq |a_n|/(n+1) > n$. The latter condition guarantees that $k(n)$ assumes infinitely many values as n ranges over I, and this completes the proof.

Suppose f has radius of convergence t, $0 < t < \infty$. Let $\epsilon > 0$ and define $g(z) = f(tz/(1 - \epsilon))$. Then $c(g) < 1$ and (2.9) implies that $s_n(g) \leq P$ for infinitely many integers n. Thus $\liminf_{n \to \infty} s_n(g) \leq P$. But $s_n(g) = ((1 - \epsilon)/t)s_n(f)$ and therefore $\liminf_{n \to \infty} s_n(f) \leq tP/(1 - \epsilon)$. It follows that $\liminf_{n \to \infty} s_n(f) \leq c(f)P$ and this proves (1.1).

Lemma 1. If n is a nonnegative integer, then

$$1 \leq P^n/H_n \leq 17.$$

This will be proved in §3.

Let m be a positive integer and suppose $z_0, z_1, \ldots, z_{m-1}$ lie on $|z| = 1$. If $k \geq m$, then (2.1) implies

$$B_k(0; z_0, \ldots, z_{m-1}, 0, \ldots, 0) = - \sum_{j=0}^{m-1} z_j^{-k} B_j(0; z_0, \ldots, z_{j-1}).$$

It follows that

$$|B_k(0; z_0, \ldots, z_{m-1}, 0, \ldots, 0)| \leq \sum_{j=0}^{m-1} H_j \leq \sum_{j=0}^{m-1} P^j < \frac{P^m}{P-1}.$$
The assertion that the constant P is best possible in (1.1) depends on the existence of a function f such that $\lim \inf s_n(f) = c(f)P$. It suffices to construct such an f satisfying $c(f) = 1$.

Lemma 2. There exists a power series $\sum_{k=0}^{\infty} A_k z^k$, with radius of convergence 1, such that each partial sum $\sum_{k=0}^{m} A_k z^k$ has a zero of modulus P.

Proof. For each nonnegative integer n, let $\{z^{(n)}_j\}_{j=1}^{n_1}$ be a sequence of complex numbers of modulus $1/P$ such that

$$|B_n(0; z^{(n)}_1, z^{(n)}_2, \ldots, z^{(n)}_n)| = H_n/P^n.$$

Here, we have used (2.4). If n, n_1 and j are positive integers such that $j \leq n_1 \leq n$, then (2.7) implies

$$|B_n(0; z^{(n)}_1, \ldots, z^{(n)}_n)| \leq H_k/P^k \leq 1$$

and (2.11) implies

$$|B_{n-k}(0; z^{(n)}_1, \ldots, z^{(n)}_{n_1+1}, 0, \ldots, 0)| \leq P^{n-n_1}/(P^{n-k}(P-1)).$$

The first sum on the right of (2.13) therefore does not exceed

$$\sum_{k=n_1-j+1}^{n_1-j} \frac{P^{n-n_1}}{(P-1)} = \frac{P^{-j+1} - P^{-n_1}}{(P-1)^2} < \frac{1}{P^{j-1}(P-1)^2}.$$

If $n_1-j+1 \leq k \leq n_1$, then

$$|B_{n-k}(0; z^{(n)}_1, \ldots, z^{(n)}_{n_1+1}, 0, \ldots, 0)| \leq H_{n-k}/P^{n-k} \leq 1.$$

In view of (2.10), (2.13) now yields

$$\sum_{k=n_1-j+1}^{n_1} |B_k(0; z^{(n)}_1, \ldots, z^{(n)}_n)| \geq \frac{1}{17} \frac{1}{P^{j-1}(P-1)^2}.$$

Taking $j=7$ and using the bound $P > 1.78$, we have $\sum_{k=n_1-j+1}^{n_1} |B_k(0; z^{(n)}_1, \ldots, z^{(n)}_n)| > 1/1000$. Therefore $|B_k(0; z^{(n)}_1, \ldots, z^{(n)}_n)| > 1/7000$ for at least one integer k, $n_1-6 \leq k \leq n_1$. Moreover, $|B_k(0; z^{(n)}_1, \ldots, z^{(n)}_n)| \leq 1$ for all n and k. Now define

$$P_n(z) = z^n B_n(1/z; z^{(n)}_1, \ldots, z^{(n)}_n), \quad n = 0, 1, 2, \ldots.$$

Since (2.6) implies $P_n(z) = \sum_{k=0}^{\infty} B_k(0; z^{(n)}_1, \ldots, z^{(n)}_n)z^k$, it follows that the coefficients of P_n are bounded by 1 and that in a set of 7 consecutive coefficients, at least one
coefficient has modulus greater than 1/7000. The sequence \(\{P_n\} \) is uniformly bounded on compact subsets of the unit disc. Extract a uniformly convergent subsequence of \(\{P_n\} \) and let \(F \) denote the limit function. Writing \(F(z) = \sum_{k=0}^\infty A_k z^k \), it follows that \(|A_k| \leq 1 \), \(0 \leq k < \infty \), and that in a set of 7 consecutive coefficients \(A_k \), at least one coefficient has modulus greater than 1/7000. Hence \(c(F) = 1 \). If \(m < n \), then (2.6) implies that the \(m \)th partial sum of \(P_n \) is given by

\[
S_m(P_n; z) = z^m B_m(1/z; z_1^{(m)}, \ldots, z_1^{(n)}).
\]

By (2.5), \(S_m(P_n; 1/z^{(n)}') = 0 \). Since \(S_m(F; z) \) is the uniform limit of a subsequence of \(\{S_m(P_n; z)\} \), it follows that \(S_m(F; z) \) has a zero of modulus \(P \). This completes the proof of the lemma.

The function \(F \) of the preceding lemma satisfies \(c(F) = 1 \) and \(\lim \inf_{n \to \infty} s_n(F) \geq P \). It follows that the constant \(P \) is best possible in (1.1).

We now show that \(P \) is the sharp constant in Porter's theorem. If \(f(z) = \sum_{k=0}^\infty a_k z^k \) has radius of convergence \(t \), then Corollary 1 implies that there are infinitely many integers \(k \) such that \(|\sum_{j=0}^k a_j z^j| \geq (|z|/t(1+\varepsilon))^k \) for all \(|z| \leq tP(1+\varepsilon) \). The corresponding subsequence of partial sums \(\{S_k(f; z)\} \) therefore tends uniformly to \(\infty \) outside the disc \(|z| \leq c(f)P \). On the other hand, we can, by Lemma 3, construct a function \(F \) such that \(c(F) = t \) and such that each partial sum of \(F \) has a zero in \(|z| \leq c(F)P \).

The inequality (1.2) is a special case of (1.6); the latter will be proved in §4. To show that \(P \) is the sharp constant in (1.2), it suffices to construct a function \(G \) satisfying \(c(G) = 1 \) and \(\lim \sup_{n \to \infty} r_n(G) \leq 1/P \).

Lemma 3. There exists a power series \(G(z) = \sum_{k=0}^\infty A_k z^k \), with \(c(G) = 1 \), such that each normalized remainder of \(G \) has a zero of modulus \(1/P \). In particular, \(\lim \sup_{n \to \infty} r_n(G) \leq 1/P \).

Proof. Consider the sequence of complex numbers \(\{B_n(0; z_1^{(n)}, \ldots, z_1^{(n)})\}_{n=1}^\infty \) constructed in Lemma 2. For each \(n \) we have \(|z_1^{(n)}| = 1/P \), for \(1 \leq j \leq n \), \(|B_j(0; z_1^{(n)}, \ldots, z_1^{(n)})| \leq 1 \), for \(0 \leq j \leq n \), and \(|B_n(0; z_1^{(n)}, \ldots, z_1^{(n)})| = H_n/P^n \). Furthermore, if \(n_1 \leq n \), then \(|B_n(0; z_1^{(n)}, \ldots, z_1^{(n)})| \geq 1/7000 \) for at least one integer \(k \) such that \(n_1 - 6 \leq k \leq n_1 \). By (2.6),

\[
B_n(z; z_1^{(n)}, \ldots, z_1^{(n)}) = \sum_{k=0}^n B_k(0; z_1^{(n)}, \ldots, z_1^{(n)}) z_1^{n-k}.
\]

The sequence \(\{B_n(z; z_1^{(n)}, \ldots, z_1^{(n)})\}_{n=1}^\infty \) is therefore uniformly bounded on compact subsets of the unit disc. Extract a uniformly convergent subsequence from \(\{B_n\} \) and let \(G \) denote the limit function. If \(G(z) = \sum_{k=0}^\infty A_k z^k \), then \(|A_k| \leq 1 \) for all \(k \) and \(|A_k| \geq 1/7000 \) for infinitely many \(k \); thus \(c(G) = 1 \). The identities

\[
\mathcal{G} B_n(z; z_1^{(n)}, \ldots, z_1^{(n)}) = B_{n-k}(z; z_1^{(n-k)}, \ldots, z_1^{(n)}),
\]

\[
B_{n-k}(z_1^{(n-k)}, \ldots, z_1^{(n)}) = 0,
\]

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
for $0 \leq k < n$, show that B_n and each of its first $(n-1)$ normalized remainders have zeros of modulus $1/P$. Furthermore, if m is a nonnegative integer, then $\mathcal{S}^mG(z)$ is the uniform limit of a subsequence of $\{\mathcal{S}^m B_n(z; z^n, \ldots, z^n)\}$ on the compact set $|z| \leq (1/P) + \epsilon < 1$. It follows that $\mathcal{S}^mG(z)$ has a zero of modulus $1/P$.

3. The functions $T_m(\mathcal{U})$. For $m = 1, 2, 3, \ldots$, and $0 \leq \mathcal{U} < 1$, define

$$T_m(\mathcal{U}) = \max_{k=m}^{\infty} |B_k(0; w_0, w_1, \ldots, w_{m-1}, 0, \ldots, 0)|$$

where the maximum is taken over all sequences $(w_k)_{k=0}^{m-1}$ whose terms lie on $|z| = 1$. The functions $T_m(\mathcal{U})$ were characterized by Buckholtz [3]. For each m, T_m is increasing; the unique solution to the equation $T_m(\mathcal{U}) = 1$ is denoted by \mathcal{U}_m. The most important property of the sequence $\{\mathcal{U}_m\}$ is the determination

$$P = \lim_{m \to \infty} \mathcal{U}_m^{-1} = \inf_{1 \leq m \leq \infty} \mathcal{U}_m^{-1}. \tag{3.1}$$

Since T_m is increasing, (3.1) implies

$$T_m(1/P) > 1, \quad m = 1, 2, 3, \ldots \tag{3.2}$$

Proof of Lemma 1. By (2.11) and (3.2), we have

$$1 \leq T_m(1/P) \leq \frac{H_m}{P^m} + \frac{H_{m+1}}{P^{m+1}} + \frac{H_{m+2}}{P^{m+2}} + \sum_{k=m+3}^{\infty} \frac{(1/P)^k}{P-1},$$

for each positive integer m.

In view of (2.8), the previous inequality implies

$$1 \leq \left(\frac{H_{m+2}}{P^{m+2}}\right) \left[1 + \frac{P}{H_1 + H_2} + \frac{P^m}{P-1} \frac{P^{-m-3}}{1-(1/P)}\right],$$

therefore,

$$1 \leq \left(\frac{H_{m+2}}{P^{m+2}}\right)[1 + P + P^2/2] + P^{-2} (P-1)^{-2}.$$

Using the bounds $1.78 < P < 1.82$, we obtain $H_{m+2}/P^{m+2} \geq 1/17$. It is easily verified that $H_j/P^j > 1/17$ for $j = 1, 2$. Since $P = \sup_{1 \leq n < \infty} H_n$, we have $1/17 \leq H_n/P^n \leq 1$ for all n.

4. Main results. In this section, we prove (1.5) and (1.6).

Lemma 4. Let m be a positive integer and $\{A_k\}_{k=0}^{\infty}$ a sequence of complex numbers $(A_0 = 1)$ such that $|A_k| \leq 1$ for $k \geq m$. Then for at least one integer p, $0 \leq p \leq m-1$, the function $A_p + A_{p+1}z + A_{p+2}z^2 + \cdots$ has no zero in the disc $|z| < \mathcal{U}_m$.

Proof. Let $f(z) = 1 + \sum_{k=0}^{\infty} A_k z^k$. We have to show that for some p, $0 \leq p \leq m-1$, $\mathcal{S}^p f(z)$ has no zero in $|z| < \mathcal{U}_m$. Let $(z_k)_{k=0}^{\infty}$ be a sequence of points in $|z| < 1$ such that $z_k = 0$ for $k \geq m$. Then, by (2.1),
\[
\sum_{k=0}^{m-1} \mathcal{S}^k f(z_k) B_k(z; z_0, \ldots, z_{k-1}) \\
= \sum_{j=0}^{m-1} A_j \sum_{k=0}^{j} z_k^{j-k} B_k(z; z_0, \ldots, z_{k-1}) + \sum_{j=m}^{\infty} A_j \sum_{k=0}^{m-1} z_k^{j-k} B_k(z; z_0, \ldots, z_{k-1}) \\
= \sum_{j=0}^{m-1} A_j z_j + \sum_{j=m}^{\infty} A_j [z^j - B_j(z; z_0, \ldots, z_{m-1}, 0, \ldots, 0)] \\
= \sum_{j=0}^{m-1} A_j z_j - \sum_{j=m}^{\infty} A_j B_j(z; z_0, \ldots, z_{m-1}, 0, \ldots, 0).
\]

By transposing, we obtain the important identity

\[(4.1) \quad f(z) = \sum_{k=0}^{m-1} \mathcal{S}^k f(z_k) B_k(z; z_0, \ldots, z_{k-1}) + \sum_{k=m}^{\infty} A_k B_k(z; z_0, \ldots, z_{m-1}, 0, \ldots, 0).\]

Without loss of generality, we may assume that each of \(\mathcal{S}^k f(z)\), \(0 \leq k \leq m-1\), has a zero in \(|z| < 1\). For \(0 \leq k \leq m-1\), let \(w_k\) denote the smallest modulus of a zero of \(y^k f(z)\). It follows from (4.1) that

\[1 = f(0) \leq \sum_{k=m}^{\infty} |B_k(0; w_0, \ldots, w_{m-1}, 0, \ldots, 0)|.\]

If \(\mathcal{U} = \max_{0 \leq k \leq m} |w_k|\), then

\[1 \leq \sum_{k=m}^{\infty} \mathcal{U}^k |B_k(0; w_0/\mathcal{U}, \ldots, w_{m-1}/\mathcal{U}, 0, \ldots, 0)| \leq T_m(\mathcal{U})\]

and therefore \(\mathcal{U} \geq \mathcal{U}_m\). Thus there is an integer \(p\), \(0 \leq p \leq m-1\), such that \(|w_p| \geq \mathcal{U}_m\) and it follows that \(\mathcal{S}^p f(z)\) has no zero in \(|z| < \mathcal{U}_m\).

Lemma 5. Let \(m\) be a positive integer and \(a_0 + a_1 z + \cdots + a_n z^n\) a polynomial of degree \(n\), \(n \geq m-1\), such that \(|a_k| \leq |a_n|\), \(0 \leq k \leq n\). Then for at least one integer \(p\), \(n - m + 1 \leq p \leq n\), the polynomial \(a_0 + a_1 z + \cdots + a_p z^n\) has all its zeros in the disc \(|z| \leq \mathcal{U}_m^{-1}\).

Proof. Let \(a_k = a_{n-k}/a_n\), \(0 \leq k \leq n\). Lemma 4 implies that there exists an integer \(q\), \(0 \leq q \leq m-1\), such that \(A_q + A_{q+1} z + \cdots + A_n z^{n-q}\) does not vanish in \(|z| < \mathcal{U}_m\). Therefore, the function \((a_{n-q}/a_n) + (a_{n-q-1}/a_n) z + \cdots + (a_0/a_n) z^{n-q}\) has no zero in \(|z| < \mathcal{U}_m\), so the same is true of \((z^{n-q}/a_n)(a_0 + a_1 z + \cdots + a_{n-q} z^{n-q})\). It follows that \((1/a_n z^{n-q})(a_0 + a_1 z + \cdots + a_{n-q} z^{n-q})\) has no zero in the region \(|z| > \mathcal{U}_m^{-1}\), hence \(a_0 + a_1 z + \cdots + a_{n-q} z^{n-q}\) has all its zeros in \(|z| \leq \mathcal{U}_m^{-1}\). Taking \(p = n-q\), we obtain the desired result.

Lemma 6. Suppose \(f(z) = \sum_{k=0}^{\infty} A_k z^k\) has R-type greater than 1. Then

\[\liminf_{n \to \infty} \frac{s_n(f)}{R_n} \leq P.\]
Proof. If \(f(z) \) is written
\[
f(z) = \sum_{k=0}^{\infty} (a_k/R_1R_2\cdots R_n)z^k,
\]
then \(\tau(f) = \lim \sup_{n \to \infty} |a_n|^{1/n} \). The condition \(\tau(f) > 1 \) implies that there exists an infinite set \(N \) of positive integers such that \(n \in N \) implies \(|a_n| > |a_k|, \quad 0 \leq k < n \).

Let \(m \) be a positive integer and suppose \(n \in N \) is such that \(n \geq m - 1 \). The \(n \)th partial sum of \(f(Rnz) \) is given by
\[
S_n(f; Rnz) = a_0 + a_1R_n z + a_2R_n z^2 + \cdots + a_nR_n z^n
\]
\[
= \frac{a_nR_n}{R_1R_2\cdots R_n} \left(z^n + \frac{a_{n-1}R_n}{a_nR_n} z^{n-1} + \frac{a_{n-2}R_{n-1}R_n}{a_nR_n^2} z^{n-2} + \cdots + \frac{a_0R_1R_2\cdots R_n}{a_nR_n^m} \right).
\]

For \(n \in N \) and \(n \geq m - 1 \), Lemma 5, applied to the polynomial
\[
z^n + \frac{a_{n-1}R_n}{a_nR_n} z^{n-1} + \frac{a_{n-2}R_{n-1}R_n}{a_nR_n^2} z^{n-2} + \cdots + \frac{a_0R_1R_2\cdots R_n}{a_nR_n^m},
\]
implies that at least one of the partial sums \(S_n(f; Rnz) \), \(S_{n-1}(f; Rnz) \), \ldots, \(S_{n-m+1}(f; Rnz) \) has all its zeros in the disc \(|z| \leq \Theta_m^{-1} \). In view of \(s_n(f(Rnz)) = R_n^{-1}s_n(f) \), for \(n - m + 1 \leq k \leq n \), it follows that
\[
\min \{ s_n(f)/R_n, s_{n-1}(f)/R_n, \ldots, s_{n-m+1}(f)/R_n \} \leq \Theta_m^{-1}
\]
for all \(n \in N \), \(n \geq m - 1 \). If \(n - k(n) \) denotes the subscript for which the minimum in (4.2) is assumed, then
\[
\min \{ s_n(f)/R_n, s_{n-1}(f)/R_n, \ldots, s_{n-m+1}(f)/R_n \} \leq \Theta_m^{-1}
\]
for \(n \in N \), \(n \geq m - 1 \). Since \(\lim_{n \to \infty} (R_{n-m+1}/R_n) = 1 \), then (4.3) implies
\[
\liminf_{j \to \infty} s_j(f)/R_j \leq \Theta_m^{-1}.
\]
Since \(m \) is arbitrary, (3.1) implies \(\liminf_{j \to \infty} s_j(f)/R_j \leq P \), which is the desired result.

For a power series \(f(z) = 1 + \sum_{k=1}^{\infty} a_kz^k \), the estimate
\[
s_n(f) \geq |a_n|^{-1/n} \quad (a_n \neq 0)
\]
follows from the fact that the geometric mean of the moduli of the zeros of \(S_n(f; z) \) does not exceed the maximum modulus of its zeros. The following lemma, whose proof we omit, is an extension of (4.4).

Lemma 7. Suppose the power series \(f(z) = \sum_{k=0}^{\infty} a_kz^k \) has positive radius of convergence and is not a polynomial. If \(N = \{ n : a_n \neq 0 \} \), then
\[
\liminf_{n \to \infty} |a_n|^{1/n} s_n(f) \geq 1.
\]
We are now ready to prove (1.5) of Theorem C.
Theorem 1. If $0 < \tau_R(f) < \infty$, then

\[\liminf_{n \to \infty} \frac{(R_1 R_2 \cdots R_n)^{1/n}}{R_n} \leq \tau_R(f) \liminf_{n \to \infty} \frac{s_n(f)}{R_n} \leq P. \]

Proof. If $f(z) = \sum_{k=0}^{\infty} A_k z^k = \sum_{k=0}^{\infty} (a_k/R_1 R_2 \cdots R_k) z^k$, then

\[\tau_R(f) = \limsup_{n \to \infty} |a_n|^{1/n} = \limsup_{n \to \infty} |A_n|^{1/n}(R_1 \cdots R_n)^{1/n} \geq R_1 \limsup_{n \to \infty} |A_n|^{1/n} = R_1/c(f) \]

and therefore $c(f) > 0$. Since $\tau_R(f) > 0$, f is not a polynomial. By Lemma 7,

\[\liminf_{n \to \infty} \frac{|A_n|^{1/n}}{s_n(f)} \geq 1, \]

where $N = \{n : A_n \neq 0\}$. Therefore,

\[\liminf_{n \to \infty} \frac{(R_1 R_2 \cdots R_n)^{1/n}}{R_n} \leq \liminf_{n \to \infty; n \in N} \frac{(R_1 R_2 \cdots R_n)^{1/n}}{R_n} \liminf_{n \to \infty; n \in N} \frac{|A_n|^{1/n}}{s_n(f)} \]

\[\leq \limsup_{n \to \infty} \frac{(R_1 R_2 \cdots R_n)^{1/n}}{|A_n|^{1/n}} \liminf_{n \to \infty; n \in N} \frac{s_n(f)}{R_n} \]

\[= \tau_R(f) \liminf_{n \to \infty} \frac{s_n(f)}{R_n}, \]

which is the left side of (4.6). For the right side of (4.6), suppose $\tau_R(f) = 1$, let $\alpha > 1$ and define $f_1(z) = f(\alpha z)$. Then $\tau_R(f_1) = \alpha$ and Lemma 6 implies $\liminf_{n \to \infty} s_n(f_1)/R_n \leq P$. Since $s_n(f_1) = \alpha^{-1}s_n(f)$, we have $\liminf_{n \to \infty} s_n(f)/R_n \leq Pa$. Letting $\alpha \to 1$, we obtain $\liminf_{n \to \infty} s_n(f)/R_n \leq P$. Now suppose $\tau_R(f) = \ell$ and define $g(z) = f(z/\ell)$. Since $\tau_R(g) = 1$, the previous inequality implies $\liminf_{n \to \infty} s_n(g)/R_n \leq P$. But $s_n(g) = ts_n(f)$ and therefore

\[\tau_R(f) \liminf_{n \to \infty} \frac{s_n(f)}{R_n} \leq P. \]

This completes the proof of the theorem and establishes (1.5).

For the proof of (1.6), we require the following lemma.

Lemma 8. If $0 < \tau_R(f) < 1$, then

\[\limsup_{n \to \infty} \frac{r_n(f)}{R_n} \geq 1/P. \]

Proof. Let $f(z) = \sum_{k=0}^{\infty} A_k z^k = \sum_{k=0}^{\infty} (a_k/R_1 R_2 \cdots R_k) z^k$. Since $\tau_R(f) = \limsup |a_n|^{1/n}$ and $0 < \tau_R(f) < 1$, then there is an infinite set N of positive integers such that $n \in N$ implies $|a_n| > |a_k|$ for $k > n$. Let m be a positive integer, let $n \in N$ and suppose k is an integer such that $0 \leq k \leq m - 1$. The expression

\[\frac{R_n^k(R_1 \cdots R_n)}{a_n} g^{k+1}f(R_n z) = \frac{a_{n+k} R_n^k}{a_n R_{n+1} \cdots R_{n+k}} + \frac{a_{n+k+1} R_n^{k+1}}{a_n R_{n+1} \cdots R_{n+k+1}} z + \cdots \]
is the kth normalized remainder of

\[
1 + \frac{a_{n+1}R_n}{a_nR_{n+1}}z + \frac{a_{n+2}R_n}{a_nR_{n+1}R_{n+2}}z^2 + \ldots.
\]

By Lemma 4, there is an integer $k(n)$, $0 \leq k(n) \leq m-1$, such that

\[
\frac{a_{n+k(n)}R_{n+k(n)}}{a_nR_{n+1}\cdots R_{n+k(n)}}z + \ldots
\]

does not vanish in $|z| \leq \mathcal{U}_m$. Therefore, $\mathcal{P}^{n+k(n)}f(R_nz)$ has no zero in $|z| \leq \mathcal{U}_m$, so that $r_{n+k(n)}(f)/R_n \geq \mathcal{U}_m$ for all $n \in N$. It follows that $(r_{n+k(n)}(f))/R_{n+k(n)}(R_n+1/R_n) \geq \mathcal{U}_m$ and, therefore, $\limsup_{n\to\infty} r_n(f)/R_n \geq \mathcal{U}_m$. By (3.1), $\limsup_{n\to\infty} r_n(f)/R_n \geq 1/P$, and this completes the proof.

The proof of (1.6) of Theorem C is contained in the following theorem.

Theorem 2. If $\tau_R(f) > 0$, then

\[
\tau_R(f) \limsup_{n \to \infty} \frac{r_n(f)}{R_n} \geq 1/P.
\]

Proof. Suppose first that $\tau_R(f) = 1$, let $0 < \alpha < 1$, and define $f_1(z) = f(az)$. Then $r_n(f_1) = \alpha^{-1}r_n(f)$ and $\tau_R(f_1) = \alpha$. By Lemma 8, $\limsup_{n \to \infty} r_n(f_1)/R_n \geq 1/P$. Thus $\limsup_{n \to \infty} r_n(f)/R_n \geq \alpha/P$ and, letting $\alpha \to 1$, we have $\limsup_{n \to \infty} r_n(f)/R_n \geq 1/P$.

Now suppose $\tau_R(f) = t$. If $t = \infty$, there is nothing to prove. For finite t, define $g(z) = f(z/t)$. Then $\tau_R(g) = 1$ and $r_n(g) = tr_n(f)$. By the previous inequality, $\tau_R(f) \limsup_{n \to \infty} r_n(f)/R_n \geq 1/P$, which is the desired result.

5. Extremal functions.

In this section, we construct extremal functions which show that P is the sharp constant in each of the three inequalities of Theorem C.

Theorem 3. There is a function f of R-type 1 such that $\liminf_{n \to \infty} s_n(f)/R_n = P$.

Proof. Let $F(z) = \sum_{k=0}^{\infty} A_k z^k$ be the function constructed in Lemma 2. Recall that $c(F) = 1$, $s_n(F) \geq P$, $|A_n| \leq 1$ and $\max\{|A_n|, |A_{n+1}|, \ldots, |A_{n+6}|\} \leq 1/7000$ for all n. Let

\[
f(z) = \sum_{k=0}^{\infty} (A_k/R_1R_2\cdots R_k)z^k \quad (R_0 = 1)
\]

and

\[
x = \liminf_{n \to \infty} \frac{s_n(f)}{R_n}.
\]

Let A denote an infinite set of positive integers such that $x = \lim_{n \to \infty; n \in A} s_n(f)/R_n$.

For $n \in A$, define

\[
P_n(z) = z^n s_n(f; R_n/z)(R_1R_2\cdots R_n)/R_n^n
\]

and

\[
Q_n(z) = z^n s_n(f; 1/z) = \sum_{k=0}^{n} A_{n-k}z^k.
\]
The bound
\[|P_n(z) - Q_n(z)| \leq \sum_{k=1}^{n} |z|^k (1 - (R_n R_{n-1} \cdots R_{n-k+1})/R_n^k) \leq (1 - |z|)^{-1} \]
holds for all \(n \in A \) and \(|z| < 1 \). Thus there is an infinite set of integers \(B \subset A \) such that the sequence \(\{P_n - Q_n\}_{n \in B} \) converges uniformly on compact subsets of \(|z| < 1 \) to a function \(g(z) = \sum_{k=0}^{\infty} a_k z^k \) analytic in the unit disc. Since
\[a_m = \lim_{n \to \infty; n \in B} A_n - m (1 - (R_n R_{n-1} \cdots R_{n-m+1})/R_n^m) = 0, \]
for \(m = 1, 2, 3, \ldots \), and \(a_0 = 0 \), then \(g \equiv 0 \). For \(n \in B \), we also have the bound \(|Q_n(z)| < (1 - |z|)^{-1} \), \(|z| < 1 \). Thus there is an infinite subset \(C \subset B \) such that \(\{Q_n\}_{n \in C} \) converges uniformly on compact subsets of \(|z| < 1 \) to a function \(Q(z) = \sum_{k=0}^{\infty} \beta_k z^k \) analytic in the unit disc. The bound \(\max \{ |\beta_k|, |\beta_{k+1}|, \ldots, |\beta_{k+\alpha}| \} > 1/7000 \) holds for the coefficients of \(Q \); in particular, \(Q \) is not identically zero. The sequence \(\{P_n(1/z)\}_{n \in C} \) converges uniformly to \(Q(1/z) \) in \(|z| < 1/p \) for all \(p < 1 \). Moreover, if \(\Gamma_n \) denotes the maximum modulus of the zeros of \(P_n(1/z) \), then \(\Gamma_n \geq P - \epsilon \) for \(n \in C \) sufficiently large. Since \(\Gamma_n = R_n^{-1} s_n(f) \), then \(s_n(f)/R_n \geq P - \epsilon \) for large \(n \in C \). Therefore
\[x = \lim_{n \to \infty; n \in C} \frac{s_n(f)}{R_n} \geq P - \epsilon; \]
letting \(\epsilon \to 0 \), we obtain the desired result.

Theorem 4. There is a function \(g \) of \(R \)-type 1 such that \(\lim \sup_{n \to \infty} r_n(g)/R_n = 1/P \).

Proof. Let \(G(z) = \sum_{k=0}^{\infty} A_k z^k \) denote the function constructed in Lemma 3. We have \(c(G) = 1 \), \(|A_k| \leq 1 \) and \(\max \{ |A_n|, |A_{n+1}|, \ldots, |A_{n+\alpha}| \} \geq 1/7000 \) for all \(n \). Let
\[g(z) = \sum_{k=0}^{N} (A_k/R_1 R_2 \cdots R_k) z^k \quad (R_0 = 1), \]
and
\[x = \lim_{n \to \infty} \frac{r_n(g)}{R_n}. \]
Let \(A \) denote an infinite set of positive integers for which \(x = \lim_{n \to \infty; n \in A} r_n(g)/R_n \). For \(m \in A \), define
\[E_m(z) = s_m G(z) - (R_1 R_2 \cdots R_m|R_m)|G(R_m z) \]
and let \(0 < \alpha < 1 \). If \(m \in A \), \(|z| \leq \alpha \) and \(N \) is a positive integer, then
\[|E_m(z)| \leq \sum_{k=1}^{\infty} \left| A_{m+k} \right| \left| (1 - R_m^k/(R_{m+1} \cdots R_{m+k})) \right| \leq \sum_{k=1}^{N} \left| (1 - R_m^k/(R_{m+1} \cdots R_{m+k})) \right| + \sum_{k=N+1}^{\infty} \alpha^k \leq (1 - R_m^N(R_{m+1} \cdots R_{m+N})) \leq 0 \leq (1 - \alpha)^{-1} + \alpha^{N+1}(1 - \alpha)^{-1}. \]
Let \(\epsilon > 0 \) and choose \(N \) so that \(\alpha^{N+1}(1 - \alpha)^{-1} < \epsilon/2 \). Let \(m_0 \in A \) be a positive integer...
such that \(m \geq m_0 \) implies \((1 - R_m/(R_{m+1} \cdots R_{m+m}))((1 - \alpha)^{-1} < \epsilon/2. \) Then the conditions \(m \geq m_0 \) and \(|z| \leq \alpha \) imply \(|E_m(z)| < \epsilon. \) Thus \(\{E_m\}_{m \in A} \) converges uniformly to zero on compact subsets of \(|z| < 1. \) For \(m \in A, \) we also have \(|\mathcal{S}^m G(Z)| \leq (1 - |z|)^{-1}. \) Thus there is an infinite subset \(B \subset A \) of integers such that \(\{\mathcal{S}^m G(Z)\}_{m \in B} \) converges uniformly on compact subsets of \(|z| < 1 \) to a function \(S(z) = \sum_{k=0}^\infty b_k z^k. \) The relation

\[
|b_k| + |b_{k+1}| + \cdots + |b_{k+\epsilon}| \geq 1/1000
\]

holds for all \(k; \) in particular \(S \neq 0. \) Since \(\mathcal{S}^m G(z) \) has a zero of modulus \(1/P \) for all \(m \in B, \) then \(S(z) \) has a zero of modulus \(1/P. \) Moreover, \(S(z) \) is the uniform limit of the sequence \(\{(R_1 R_2 \cdots R_m/R_m)^m \mathcal{S}^m g(R_m z)\}_{m \in B} \) and it follows from Hurwitz’s Theorem that, if \(\epsilon > 0, \) then \(\mathcal{S}^m g(R_m z) \) has a zero of modulus at most \((1/P) + \epsilon \) for \(m \in B \) sufficiently large. Therefore \(r_m(g)/R_m \leq (1/P) + \epsilon \) for large \(m \in B, \) and it follows that

\[
x = \lim_{m \to \infty; m \in B} \frac{r_m(g)}{R_m} \leq (1/P) + \epsilon.
\]

Since \(\epsilon > 0 \) is arbitrary, we obtain \(\lim \sup_{n \to \infty} r_n(g)/R_n \leq 1/P \) and this completes the proof.

For the left-hand side of (1.5), we begin by considering the infinite matrix \((a_{mn}),\)

\[
amn = \frac{2(m-n+1)/m^2}{m = n = m},
\]

\[
= 0, \quad m < n.
\]

It is easily verified that

1. \(\lim_{m \to \infty} a_{mn} = 0, \quad n = 1, 2, 3, \ldots, \)
2. \(\sup_m \sum_{n=1}^\infty |a_{mn}| = 2, \)
3. \(\lim_{m \to \infty} \sum_{n=1}^\infty a_{mn} = 1. \)

Thus \((a_{mn})\) provides a regular method of summability. If \(\{R_n\}_{n=1}^\infty \) is a non-decreasing sequence of positive numbers \((R_0 = 1)\) such that \(R_{n+1}/R_n \to 1, \) then \((a_{mn})\) transforms the sequence \(\{\log(R_n/R_{n-1})\}_{n=1}^\infty \) into \(\{2 \log(R_1 R_2 \cdots R_n)^{1/n^2}\}_{n=1}^\infty. \) Therefore

\[
\lim_{n \to \infty} [2 \log(R_1 R_2 \cdots R_n)^{1/n^2}] = \lim_{n \to \infty} [\log(R_n/R_{n-1})] = 0,
\]

or

\[
(5.1) \quad \lim_{n \to \infty} (R_1 R_2 \cdots R_n)^{1/n^2} = 1.
\]

We use this result to prove the following lemma.

Lemma 9. Let \(\{R_n\}_{n=1}^\infty \) \((R_0 = 1)\) be a nondecreasing sequence of positive numbers such that \((R_1 R_2 \cdots R_n)^{1/n} \to \infty \) and \(R_{n+1}/R_n \to 1, \) as \(n \to \infty. \) For each pair of positive integers \(m \) and \(p, \) let \(x_{mp} \) be the largest root of the equation

\[
x^m + p \quad R_1 \cdots R_{m+p} = x^m \quad R_1 \cdots R_m + \frac{x^{m-1}}{R_1 \cdots R_{m-1}} + \cdots + \frac{X}{R_1} + 1.
\]
Then
\[\lim_{p \to \infty} \frac{x_{mp}}{(R_1 \cdots R_{m+p})^{1/(m+p)}} = 1 \]
for \(m = 1, 2, 3, \ldots \).

Proof. For all \(m \) and \(p \) we have \(x_{mp} \leq (R_1 \cdots R_{m+p})^{1/(m+p)} \), and therefore \(x_{mp} \to \infty \) as \(p \to \infty \), \(m = 1, 2, 3, \ldots \). Let \(m \) be a positive integer and choose \(p \) so large that
\[\frac{x_{mp}^m}{(R_1 \cdots R_m)^{m^2/k}} \leq (R_1 \cdots R_{m-k})^{1/(m-k)} \]
for \(0 \leq k \leq m \). For such integers \(p \) we have \(x_{mp}^{m+p}/(R_1 \cdots R_{m+p}) \leq (m+1)x_{mp}/(R_1 \cdots R_m) \) and hence
\[x_{mp} \leq (m+1)^{1/p}(R_{m+1} \cdots R_{m+p})^{1/p}. \]
Thus
\[1 \leq \frac{x_{mp}}{(R_1 \cdots R_{m+p})^{1/(m+p)}} \leq \frac{(m+1)^{1/p}}{(R_1 \cdots R_m)^{1/(m+p)}} \left(\frac{R_{m+1} \cdots R_{m+p}}{R_1 \cdots R_m} \right)^{(1/p)-(1/(m+p))}. \]
Since each of \((m+1)^{1/p}\) and \((R_1 \cdots R_m)^{1/(m+p)}\) tends to 1 as \(p \to \infty \), it is sufficient to show that
\[(R_{m+1} \cdots R_{m+p})^{1/(m+p)-(1/(m+p))} = (R_1 \cdots R_{m+p})^{1/(m+p+1)} \to 1, \quad p \to \infty. \]
Since \((R_1 \cdots R_m)^{m/(m+p)} \to 1\), it is sufficient to show that \((R_1 \cdots R_{m+p})^{1/(m+p)} \to 1\).

Now
\[(R_1 \cdots R_{m+p})^{1/(m+p+1)} = (R_1 \cdots R_{m+p})^{1/(m+p+1)} [(R_1 \cdots R_{m+p})^{1/(m+p+1)}]^{m/p}, \]
and we know that \((R_1 \cdots R_{m+p})^{1/(m+p+1)} \to 1, \quad p \to \infty. \) Thus \((R_1 \cdots R_{m+p})^{1/(m+p+1)} \to 1\), and this completes the proof.

Theorem 5. There is a function \(\varphi \) of \(R \)-type 1 such that
\[\liminf_{n \to \infty} \frac{(R_1 R_2 \cdots R_n)^{1/n}}{R_n} = \liminf_{n \to \infty} \frac{x_\varphi(\varphi)}{R_n}. \]

Proof. Let \(\{R_n\}_{n=1}^{\infty} \) (\(R_0 = 1 \)) and \(\{x_{mp}\}_{m,p=1}^{\infty} \) be defined as in Lemma 9. Let \(\{n_k\}_{k=1}^{\infty} \) denote a sequence of positive integers such that
\[\lim_{n \to \infty} \frac{(R_1 R_2 \cdots R_n)^{1/n}}{R_n} = \lim_{k \to \infty} \frac{(R_1 \cdots R_{n_k})^{1/n_k}}{R_{n_k}}. \]
Let \(m_1 = n_1 \), choose an integer \(p_1 \) such that \(m_1 + p_1 \in \{n_j\} \) and
\[\frac{x_{mp_1}}{(R_1 \cdots R_{m_1+p_1})^{1/(m_1+p_1)}} < 1 + \frac{1}{2}, \]
and let \(m_2 = m_1 + p_1 \). If \(m_k = m_{k-1} + p_{k-1} \in \{n_j\} \) has been chosen, choose the integer \(p_k \) such that \(m_k + p_k \in \{n_j\} \) and
\[x_{mp_k}/(R_1 \cdots R_{m_k+p_k})^{1/(m_k+p_k)} < 1 + 1/(k+1). \]
and let $m_{k+1} = m_k + p_k$. Thus we inductively obtain the sequence \{\{m_j\} \subset \{n_j\} such that (5.3) holds for $k = 1, 2, 3, \ldots$. Now let

$$\varphi(z) = 1 + z^{m_1}/(R_1 \cdots R_{m_1}) + z^{m_2}/(R_1 \cdots R_{m_2}) + \cdots.$$

Note that

$$|S_{m_j}(\varphi; z)| \geq \frac{|z|^{m_j}}{R_1 \cdots R_{m_j}} - \frac{|z|^{m_j-1}}{R_1 \cdots R_{m_j-1}} - \cdots - \frac{|z|^{m_1}}{R_1 \cdots R_{m_1}} - 1,$$

for $j = 1, 2, 3, \ldots$. Moreover, if $x > x_{mp}$, then

$$\frac{x^{m+p}}{R_1 \cdots R_{m+p}} > \frac{x^m}{R_1 \cdots R_{m}} + \cdots + \frac{x}{R_{1}} + 1,$$

since x_{mp} is the largest positive root of (5.2). Thus if $|z| = x > x_{mp-1}$, then $|S_{m_j}(\varphi; z)| > 0$. Therefore $s_{m_j}(\varphi) \leq x_{m_j-1}$. From (5.3) we have

$$s_{m_j}(\varphi)/(R_1 \cdots R_{m_j})^{1/m_j} \leq 1 + 1/j \text{ for } j = 1, 2, 3, \ldots.$$

Since $s_n(\varphi) = \infty$ for integers $n \notin \{m_j\}$, then

$$\liminf_{n \to \infty} \frac{s_n(\varphi)}{R_{n}} = \liminf_{n \to \infty} \frac{s_{m_j}(\varphi)}{R_{m_j}} \leq \liminf_{n \to \infty} \left[\left(\frac{R_1 \cdots R_{m_j}}{R_{m_j}} \right)^{1/m_j} \left(1 + \frac{1}{j} \right) \right] = \lim_{k \to \infty} \left(\frac{R_1 \cdots R_{n_k}}{R_{n_k}} \right)^{1/n_n} = \liminf_{n \to \infty} \left(\frac{R_1 \cdots R_{n}}{R_{n}} \right)^{1/n}.$$

and this completes the proof.

REFERENCES