Zeros of partial sums and remainders of power series
HTML articles powered by AMS MathViewer
- by J. D. Buckholtz and J. K. Shaw
- Trans. Amer. Math. Soc. 166 (1972), 269-284
- DOI: https://doi.org/10.1090/S0002-9947-1972-0299762-3
- PDF | Request permission
Abstract:
For a power series $f(z) = \Sigma _{k = 0}^\infty {a_k}{z^k}$ let ${s_n}(f)$ denote the maximum modulus of the zeros of the nth partial sum of f and let ${r_n}(f)$ denote the smallest modulus of a zero of the nth normalized remainder $\Sigma _{k = n}^\infty {a_k}{z^{k - n}}$. The present paper investigates the relationships between the growth of the analytic function f and the behavior of the sequences $\{ {s_n}(f)\}$ and $\{ {r_n}(f)\}$. The principal growth measure used is that of R-type: if $R = \{ {R_n}\}$ is a nondecreasing sequence of positive numbers such that $\lim ({R_{n + 1}}/{R_n}) = 1$, then the R-type of f is ${\tau _R}(f) = \lim \sup |{a_n}{R_1}{R_2} \cdots {R_n}{|^{1/n}}$. We prove that there is a constant P such that \[ {\tau _R}(f)\lim \inf ({s_n}(f)/{R_n}) \leqq P\quad {\text {and}}\quad {\tau _R}(f)\lim \sup ({r_n}(f)/{R_n}) \geqq (1/P)\] for functions f of positive finite R-type. The constant P cannot be replaced by a smaller number in either inequality; P is called the power series constant.References
- Ralph P. Boas Jr. and R. Creighton Buck, Polynomial expansions of analytic functions, Ergebnisse der Mathematik und ihrer Grenzgebiete, (N.F.), Heft 19, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1958. MR 0094466, DOI 10.1007/978-3-642-87887-9
- J. D. Buckholtz, Zeros of partial sums of power series, Michigan Math. J. 15 (1968), 481–484. MR 235097, DOI 10.1307/mmj/1029000105
- J. D. Buckholtz, Zeros of partial sums of power series. II, Michigan Math. J. 17 (1970), 5–14. MR 259076, DOI 10.1307/mmj/1029000369
- J. D. Buckholtz and J. L. Frank, Whittaker constants, Proc. London Math. Soc. (3) 23 (1971), 348–370. MR 296297, DOI 10.1112/plms/s3-23.2.348
- M. B. Porter, On the polynomial convergents of a power series, Ann. of Math. (2) 8 (1907), no. 4, 189–192. MR 1502347, DOI 10.2307/1967824 M. Tsuji, On the distribution of the zero points of sections of a power series. III, Japan. J. Math. 3 (1926), 49-51.
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 166 (1972), 269-284
- MSC: Primary 30A08
- DOI: https://doi.org/10.1090/S0002-9947-1972-0299762-3
- MathSciNet review: 0299762