The dominion of Isbell
HTML articles powered by AMS MathViewer
- by Barry Mitchell
- Trans. Amer. Math. Soc. 167 (1972), 319-331
- DOI: https://doi.org/10.1090/S0002-9947-1972-0294441-0
- PDF | Request permission
Abstract:
A well-known characterization of epimorphisms in the category of rings with identity is imitated to give a similar characterization of epimorphisms in the category of small pre-additive categories. From this one deduces Isbell’s “Zigzag Theorem” concerning epimorphisms in Cat.References
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- A. H. Clifford and G. B. Preston, The algebraic theory of semigroups. Vol. I, Mathematical Surveys, No. 7, American Mathematical Society, Providence, R.I., 1961. MR 0132791
- Peter Freyd, Redei’s finiteness theorem for commutative semigroups, Proc. Amer. Math. Soc. 19 (1968), 1003. MR 227290, DOI 10.1090/S0002-9939-1968-0227290-4
- John R. Isbell, Epimorphisms and dominions, Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965) Springer, New York, 1966, pp. 232–246. MR 0209202
- John R. Isbell, Epimorphisms and dominions, Proc. Conf. Categorical Algebra (La Jolla, Calif., 1965) Springer, New York, 1966, pp. 232–246. MR 0209202
- John R. Isbell, Epimorphisms and dominions. III, Amer. J. Math. 90 (1968), 1025–1030. MR 237596, DOI 10.2307/2373286
- John R. Isbell, Epimorphisms and dominions. IV, J. London Math. Soc. (2) 1 (1969), 265–273. MR 257120, DOI 10.1112/jlms/s2-1.1.265
- L. Silver, Noncommutative localizations and applications, J. Algebra 7 (1967), 44–76. MR 217114, DOI 10.1016/0021-8693(67)90067-1
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 167 (1972), 319-331
- MSC: Primary 18E05
- DOI: https://doi.org/10.1090/S0002-9947-1972-0294441-0
- MathSciNet review: 0294441