Temperatures in several variables: Kernel functions, representations, and parabolic boundary values
HTML articles powered by AMS MathViewer
- by John T. Kemper
- Trans. Amer. Math. Soc. 167 (1972), 243-262
- DOI: https://doi.org/10.1090/S0002-9947-1972-0294903-6
- PDF | Request permission
Abstract:
This work develops the notion of a kernel function for the heat equation in certain regions of $n + 1$-dimensional Euclidean space and applies that notion to the study of the boundary behavior of nonnegative temperatures. The regions in question are bounded between spacelike hyperplanes and satisfy a parabolic Lipschitz condition at points on the lateral boundary. Kernel functions (normalized, nonnegative temperatures which vanish on the parabolic boundary except at a single point) are shown to exist uniquely. A representation theorem for nonnegative temperatures is obtained and used to establish the existence of finite parabolic limits at the boundary (except for a set of heat-related measure zero).References
- A. S. Besicovitch, A general form of the covering principle and relative differentiation of additive functions. II, Proc. Cambridge Philos. Soc. 42 (1946), 1–10. MR 14414, DOI 10.1017/s0305004100022660
- J. R. Hattemer, Boundary behavior of temperatures. I, Studia Math. 25 (1964/65), 111–155. MR 181838, DOI 10.4064/sm-25-1-111-155
- Richard A. Hunt and Richard L. Wheeden, On the boundary values of harmonic functions, Trans. Amer. Math. Soc. 132 (1968), 307–322. MR 226044, DOI 10.1090/S0002-9947-1968-0226044-7
- Richard A. Hunt and Richard L. Wheeden, Positive harmonic functions on Lipschitz domains, Trans. Amer. Math. Soc. 147 (1970), 507–527. MR 274787, DOI 10.1090/S0002-9947-1970-0274787-0
- B. Frank Jones Jr. and C. C. Tu, Non-tangential limits for a solution of the heat equation in a two-dimensional $\textrm {Lip}_{\alpha }$ region, Duke Math. J. 37 (1970), 243–254. MR 259388
- John T. Kemper, Kernel functions and parabolic limits for the heat equation, Bull. Amer. Math. Soc. 76 (1970), 1319–1320. MR 264246, DOI 10.1090/S0002-9904-1970-12658-1
- John T. Kemper, Kernel functions and parabolic limits for the heat equation, Bull. Amer. Math. Soc. 76 (1970), 1319–1320. MR 264246, DOI 10.1090/S0002-9904-1970-12658-1
- I. Petrowsky, Zur ersten Randwertaufgabe der Wärmeleitungsgleichung, Compositio Math. 1 (1935), 383–419 (German). MR 1556900
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 167 (1972), 243-262
- MSC: Primary 35K05
- DOI: https://doi.org/10.1090/S0002-9947-1972-0294903-6
- MathSciNet review: 0294903