Hyperbolic limit sets
Author:
Sheldon E. Newhouse
Journal:
Trans. Amer. Math. Soc. 167 (1972), 125-150
MSC:
Primary 58F15; Secondary 34C35
DOI:
https://doi.org/10.1090/S0002-9947-1972-0295388-6
MathSciNet review:
0295388
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Many known results for diffeomorphisms satisfying Axiom A are shown to be true with weaker assumptions. It is proved that if the negative limit set of a diffeomorphism f is hyperbolic, then the periodic points of f are dense in
. A spectral decomposition theorem and a filtration theorem for such diffeomorphisms are obtained and used to prove that if
is hyperbolic and has no cycles, then f satisfies Axiom A, and hence is
-stable. Examples are given where
is hyperbolic, there are cycles, and f fails to satisfy Axiom A.
- [1] George D. Birkhoff, Dynamical systems, With an addendum by Jurgen Moser. American Mathematical Society Colloquium Publications, Vol. IX, American Mathematical Society, Providence, R.I., 1966. MR 0209095
- [2] Morris W. Hirsch and Charles C. Pugh, Stable manifolds and hyperbolic sets, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 133–163. MR 0271991
- [3] M. Hirsch, J. Palis, C. Pugh, and M. Shub, Neighborhoods of hyperbolic sets, Invent. Math. 9 (1969/70), 121–134. MR 262627, https://doi.org/10.1007/BF01404552
- [4] J. Palis, On Morse-Smale dynamical systems, Topology 8 (1968), 385–404. MR 246316, https://doi.org/10.1016/0040-9383(69)90024-X
- [5]
-, A note on
-stability, Proc. Sympos. Pure Math., vol. 14, Amer. Math. Soc., Providence, R. I., 1970. MR 41 #7686.
- [6] J. Palis and S. Smale, Structural stability theorems, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 223–231. MR 0267603
- [7] Charles Pugh and Michael Shub, The Ω-stability theorem for flows, Invent. Math. 11 (1970), 150–158. MR 287579, https://doi.org/10.1007/BF01404608
- [8] J. W. Robbin, A structural stability theorem, Ann. of Math. (2) 94 (1971), 447–493. MR 287580, https://doi.org/10.2307/1970766
- [9] Stephen Smale, Diffeomorphisms with many periodic points, Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), Princeton Univ. Press, Princeton, N.J., 1965, pp. 63–80. MR 0182020
- [10] S. Smale, Differentiable dynamical systems, Bull. Amer. Math. Soc. 73 (1967), 747–817. MR 228014, https://doi.org/10.1090/S0002-9904-1967-11798-1
- [11] S. Smale, The Ω-stability theorem, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, r.I., 1970, pp. 289–297. MR 0271971
- [12] Zbigniew Nitecki, On semi-stability for diffeomorphisms, Invent. Math. 14 (1971), 83–122. MR 293671, https://doi.org/10.1007/BF01405359
- [13] R. Abraham and S. Smale, Nongenericity of Ω-stability, Global Analysis (Proc. Sympos. Pure Math., Vol. XIV, Berkeley, Calif., 1968), Amer. Math. Soc., Providence, R.I., 1970, pp. 5–8. MR 0271986
- [14] L. P. Šil′nikov, On the question of the structure of the neighborhood of a homoclinic tube of an invariant torus, Dokl. Akad. Nauk SSSR 180 (1968), 286–289 (Russian). MR 0248861
Retrieve articles in Transactions of the American Mathematical Society with MSC: 58F15, 34C35
Retrieve articles in all journals with MSC: 58F15, 34C35
Additional Information
DOI:
https://doi.org/10.1090/S0002-9947-1972-0295388-6
Keywords:
Limit set,
hyperbolic,
periodic point,
topologically transitive,
filtration,
basic set,
stable manifold,
nonwandering
Article copyright:
© Copyright 1972
American Mathematical Society