Noetherian intersections of integral domains
HTML articles powered by AMS MathViewer
- by William Heinzer and Jack Ohm
- Trans. Amer. Math. Soc. 167 (1972), 291-308
- DOI: https://doi.org/10.1090/S0002-9947-1972-0296095-6
- PDF | Request permission
Abstract:
Let $D < R$ be integral domains having the same quotient field K and suppose that there exists a family ${\{ {V_i}\} _{i \in I}}$ of 1-dim quasi-local domains having quotient field K such that $D = R \cap \{ {V_i}|i \in I\}$. The goal of this paper is to find conditions on R and the ${V_i}$ in order for D to be noetherian and, conversely, conditions on D in order for R and the ${V_i}$ to be noetherian. An important motivating case is when the set $\{ {V_i}\}$ consists of a single element V and V is a valuation ring. It is shown, for example, in this case that (i) if V is centered on a finitely generated ideal of D, then V is noetherian and (ii) if V is centered on a maximal ideal of D, then D is noetherian if and only if R and V are noetherian.References
- Tomoharu Akiba, Remarks on generalized rings of quotients, Proc. Japan Acad. 40 (1964), 801–806. MR 180573
- Tomoharu Akiba, Remarks on generalized rings of quotients. II, J. Math. Kyoto Univ. 5 (1965), 39–44. MR 200286, DOI 10.1215/kjm/1250524555 N. Bourbaki, a) Algèbre commutative. Chap. 1: Modules plats. Chap. 2: Localisation, Actualités Sci. Indust., no. 1290, Hermann, Paris, 1961. MR 36 #146. —b) Algèbre commutative. Chap. 3: Graduations, filtrations et topologies. Chap. 4: Idéaux premiers associés et décomposition primaire, Actualités Sci. Indust., no. 1293, Hermann, Paris, 1961. MR 30 #2027. —c) Algèbre commutative. Chap. 5: Entièrs. Chap. 6: Valuations, Actualités Sci. Indust., no. 1308, Hermann, Paris, 1964. MR 33 #2660.
- Paul M. Eakin Jr., The converse to a well known theorem on Noetherian rings, Math. Ann. 177 (1968), 278–282. MR 225767, DOI 10.1007/BF01350720
- Paul Eakin and William Heinzer, Non finiteness in finite dimensional Krull domains, J. Algebra 14 (1970), 333–340. MR 254023, DOI 10.1016/0021-8693(70)90109-2
- Robert W. Gilmer Jr., Overrings of Prüfer domains, J. Algebra 4 (1966), 331–340. MR 202749, DOI 10.1016/0021-8693(66)90025-1
- William Heinzer, On Krull overrings of an affine ring, Pacific J. Math. 29 (1969), 145–149. MR 244220, DOI 10.2140/pjm.1969.29.145
- William Heinzer, Jack Ohm, and R. L. Pendleton, On integral domains of the form $\cap D_{P}, P$ minimal, J. Reine Angew. Math. 241 (1970), 147–159. MR 263793
- Daniel Lazard, Autour de la platitude, Bull. Soc. Math. France 97 (1969), 81–128 (French). MR 254100, DOI 10.24033/bsmf.1675
- K. R. Nagarajan, Groups acting on Noetherian rings, Nieuw Arch. Wisk. (3) 16 (1968), 25–29. MR 229628
- Masayoshi Nagata, A type of subrings of a noetherian ring, J. Math. Kyoto Univ. 8 (1968), 465–467. MR 236162, DOI 10.1215/kjm/1250524062
- Masayoshi Nagata, Local rings, Interscience Tracts in Pure and Applied Mathematics, No. 13, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155856
- Jack Ohm, Some counterexamples related to integral closure in $D[[x]]$, Trans. Amer. Math. Soc. 122 (1966), 321–333. MR 202753, DOI 10.1090/S0002-9947-1966-0202753-9 J. Ohm and R. Pendleton, Weak Krull rings (unpublished).
- Fred Richman, Generalized quotient rings, Proc. Amer. Math. Soc. 16 (1965), 794–799. MR 181653, DOI 10.1090/S0002-9939-1965-0181653-1
- Oscar Zariski and Pierre Samuel, Commutative algebra. Vol. II, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0120249, DOI 10.1007/978-3-662-29244-0
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 167 (1972), 291-308
- MSC: Primary 16A02; Secondary 13E05
- DOI: https://doi.org/10.1090/S0002-9947-1972-0296095-6
- MathSciNet review: 0296095