Oscillation and nonoscillation of solutions of generalized Emden-Fowler equations
HTML articles powered by AMS MathViewer
- by C. V. Coffman and J. S. W. Wong
- Trans. Amer. Math. Soc. 167 (1972), 399-434
- DOI: https://doi.org/10.1090/S0002-9947-1972-0296413-9
- PDF | Request permission
Abstract:
This paper treats the ordinary differential equation $y'' + yF({y^2},x) = 0,x > 0$ , where $yF({y^2},x)$ is continuous in (y, x) for $x > 0,|y| < \infty$, and $F(t,x)$ is non-negative; the equation is assumed to be either of sublinear or superlinear type. Criteria are given for the equation to be oscillatory, to be nonoscillatory, to possess oscillatory solutions or to possess nonoscillatory solutions. An attempt has been made to unify the methods of treatment of the sublinear and superlinear cases. These methods consist primarily of comparison with linear equations and the use of “energy” functions. An Appendix treats the questions of continuability and uniqueness of solutions of the equation considered in the main text.References
- F. V. Atkinson, On second-order non-linear oscillations, Pacific J. Math. 5 (1955), 643–647. MR 72316, DOI 10.2140/pjm.1955.5.643
- Štefan Belohorec, On some properties of the equation $y^{\prime \prime }(x)+f(x)y^{\alpha }(x)=0$, $0<\alpha <1$, Mat. Časopis Sloven. Akad. Vied 17 (1967), 10–19 (English, with Russian summary). MR 214854
- C. V. Coffman and J. S. W. Wong, On a second order nonlinear oscillation problem, Trans. Amer. Math. Soc. 147 (1970), 357–366. MR 257473, DOI 10.1090/S0002-9947-1970-0257473-2
- C. V. Coffman and J. S. W. Wong, Second order nonlinear oscillations, Bull. Amer. Math. Soc. 75 (1969), 1379–1382. MR 247180, DOI 10.1090/S0002-9904-1969-12427-4 R. H. Fowler, Further studies of Emden’s and similar differential equations, Quart. J. Math. 2 (1931), 259-288.
- J. W. Heidel, A nonoscillation theorem for a nonlinear second order differential equation, Proc. Amer. Math. Soc. 22 (1969), 485–488. MR 248396, DOI 10.1090/S0002-9939-1969-0248396-0
- Miloš Jasný, On the existence of an oscillating solution of the nonlinear differential equation of the second order $y^{\prime \prime }+f(x)y^{2n-1}=0,$ $f(x)>0$, Časopis Pěst. Mat. 85 (1960), 78–83 (Russian, with Czech and English summaries). MR 0142840, DOI 10.21136/CPM.1960.108129
- I. T. Kiguradze, On the conditions for oscillation of solutions of the differential equation $u^{\prime \prime }+a(t)|u|\ sp{n}\,\textrm {sgn}\, u=0$, Časopis Pěst. Mat. 87 (1962), 492–495 (Russian, with Czech and German summaries). MR 0181800, DOI 10.21136/CPM.1962.117457
- Jaroslav Kurzweil, A note on oscillatory solution of equation $y''+f(x)y^{2n-1}=0$, Časopis Pěst. Mat. 85 (1960), 357–358 (Russian, with English and Czech summaries). MR 0126025, DOI 10.21136/CPM.1960.117339
- Jack W. Macki and James S. W. Wong, Oscillation of solutions to second-order nonlinear differential equations, Pacific J. Math. 24 (1968), 111–117. MR 224908, DOI 10.2140/pjm.1968.24.111
- Zeev Nehari, On a class of nonlinear second-order differential equations, Trans. Amer. Math. Soc. 95 (1960), 101–123. MR 111898, DOI 10.1090/S0002-9947-1960-0111898-8
- Zeev Nehari, Characteristic values associated with a class of non-linear second-order differential equations, Acta Math. 105 (1961), 141–175. MR 123775, DOI 10.1007/BF02559588
- Zeev Nehari, A nonlinear oscillation problem, J. Differential Equations 5 (1969), 452–460. MR 235203, DOI 10.1016/0022-0396(69)90085-0
- James S. W. Wong, Some properties of solutions of $u^{\prime \prime }(t)+a(t)f(u)g(u^{\prime } )=0$. III, SIAM J. Appl. Math. 14 (1966), 209–214. MR 203167, DOI 10.1137/0114017
- James S. W. Wong, On second order nonlinear oscillation, Funkcial. Ekvac. 11 (1968), 207–234 (1969). MR 245915
- C. V. Coffman and D. F. Ullrich, On the continuation of solutions of a certain non-linear differential equation, Monatsh. Math. 71 (1967), 385–392. MR 227494, DOI 10.1007/BF01295129
- Charles V. Coffman, On the positive solutions of boundary-value problems for a class of nonlinear differential equations, J. Differential Equations 3 (1967), 92–111. MR 204755, DOI 10.1016/0022-0396(67)90009-5
- Stuart P. Hastings, Boundary value problems in one differential equation with a discontinuity, J. Differential Equations 1 (1965), 346–369. MR 180723, DOI 10.1016/0022-0396(65)90013-6
- Philip Hartman, Ordinary differential equations, John Wiley & Sons, Inc., New York-London-Sydney, 1964. MR 0171038
- J. W. Heidel, Uniqueness, continuation, and nonoscillation for a second order nonlinear differential equation, Pacific J. Math. 32 (1970), 715–721. MR 259244, DOI 10.2140/pjm.1970.32.715
- D. V. Izjumova and I. T. Kiguradze, Some remarks on the solutions of the equation $u^{n}+a(t)f(u)=0$, Differencial′nye Uravnenija 4 (1968), 589–605 (Russian). MR 0227544
- R. M. Moroney, Note on a theorem of Nehari, Proc. Amer. Math. Soc. 13 (1962), 407–410. MR 148983, DOI 10.1090/S0002-9939-1962-0148983-8
- Richard A. Moore and Zeev Nehari, Nonoscillation theorems for a class of nonlinear differential equations, Trans. Amer. Math. Soc. 93 (1959), 30–52. MR 111897, DOI 10.1090/S0002-9947-1959-0111897-8
- David F. Ullrich, Boundary value problems for a class of nonlinear second-order differential equations, J. Math. Anal. Appl. 28 (1969), 188–210. MR 245897, DOI 10.1016/0022-247X(69)90122-X
- D. Willett and J. S. W. Wong, Some properties of the solutions of $[p(t)x^{\prime } ]^{\prime } +q(t)f(x)=0$, J. Math. Anal. Appl. 23 (1968), 15–24. MR 226117, DOI 10.1016/0022-247X(68)90112-1
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 167 (1972), 399-434
- MSC: Primary 34C10
- DOI: https://doi.org/10.1090/S0002-9947-1972-0296413-9
- MathSciNet review: 0296413