Locally $B^{\ast }$-equivalent algebras
HTML articles powered by AMS MathViewer
- by Bruce A. Barnes
- Trans. Amer. Math. Soc. 167 (1972), 435-442
- DOI: https://doi.org/10.1090/S0002-9947-1972-0296704-1
- PDF | Request permission
Abstract:
Let A be a Banach $^ \ast$-algebra. A is locally ${B^ \ast }$-equivalent if, for every selfadjoint element $t \in A$, the closed $^ \ast$-subalgebra of A generated by t is $^\ast$-isomorphic to a ${B^ \ast }$-algebra. In this paper it is shown that when A is locally ${B^\ast }$-equivalent, and in addition every selfadjoint element in A has at most countable spectrum, then A is $^ \ast$-isomorphic to a ${B^ \ast }$-algebra.References
- Bruce A. Barnes, On the existence of minimal ideals in a Banach algebra, Trans. Amer. Math. Soc. 133 (1968), 511â517. MR 226418, DOI 10.1090/S0002-9947-1968-0226418-4
- Satish Shirali and James W. M. Ford, Symmetry in complex involutory Banach algebras. II, Duke Math. J. 37 (1970), 275â280. MR 261362
- B. E. Johnson, The uniqueness of the (complete) norm topology, Bull. Amer. Math. Soc. 73 (1967), 537â539. MR 211260, DOI 10.1090/S0002-9904-1967-11735-X
- Yitzhak Katznelson, AlgĂšbres caractĂ©risĂ©es par les fonctions qui opĂšrent sur elles, C. R. Acad. Sci. Paris 247 (1958), 903â905 (French). MR 98991
- Y. Katznelson, Sur les algĂšbres dont les Ă©lĂ©ments non nĂ©gatifs admettent des racines carrĂ©es, Ann. Sci. Ăcole Norm. Sup. (3) 77 (1960), 167â174 (French). MR 0121669, DOI 10.24033/asens.1090
- Charles E. Rickart, General theory of Banach algebras, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0115101
- Bertram Yood, Faithful $^{\ast }$-representations of normed algebras, Pacific J. Math. 10 (1960), 345â363. MR 110958, DOI 10.2140/pjm.1960.10.345
- Bertram Yood, Ideals in topological rings, Canadian J. Math. 16 (1964), 28â45. MR 158279, DOI 10.4153/CJM-1964-004-2
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 167 (1972), 435-442
- MSC: Primary 46K05
- DOI: https://doi.org/10.1090/S0002-9947-1972-0296704-1
- MathSciNet review: 0296704