Multipliers for spherical harmonic expansions
HTML articles powered by AMS MathViewer
- by Robert S. Strichartz
- Trans. Amer. Math. Soc. 167 (1972), 115-124
- DOI: https://doi.org/10.1090/S0002-9947-1972-0306823-9
- PDF | Request permission
Abstract:
Sufficient conditions are given for an operator on the sphere that commutes with rotations to be bounded in ${L^p}$. The conditions are analogous to those of Hörmander’s well-known theorem on Fourier multipliers.References
- Richard Askey and Stephen Wainger, On the behavior of special classes of ultraspherical expansions. I, II, J. Analyse Math. 15 (1965), 193–220. MR 193290, DOI 10.1007/BF02787693
- A.-P. Calderón, Intermediate spaces and interpolation, the complex method, Studia Math. 24 (1964), 113–190. MR 167830, DOI 10.4064/sm-24-2-113-190
- Walter Littman, Multipliers in $L^{p}$ and interpolation, Bull. Amer. Math. Soc. 71 (1965), 764–766. MR 179544, DOI 10.1090/S0002-9904-1965-11382-9
- B. Muckenhoupt and E. M. Stein, Classical expansions and their relation to conjugate harmonic functions, Trans. Amer. Math. Soc. 118 (1965), 17–92. MR 199636, DOI 10.1090/S0002-9947-1965-0199636-9
- Jaak Peetre, Applications de la théorie des espaces d’interpolation dans l’analyse harmonique, Ricerche Mat. 15 (1966), 3–36 (French). MR 221214
- Elias M. Stein, Topics in harmonic analysis related to the Littlewood-Paley theory. , Annals of Mathematics Studies, No. 63, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1970. MR 0252961
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- E. M. Stein, $L^{p}$ boundedness of certain convolution operators, Bull. Amer. Math. Soc. 77 (1971), 404–405. MR 276757, DOI 10.1090/S0002-9904-1971-12716-7 R. Strichartz, A functional calculus for elliptic pseudodifferential operators (to appear).
- Mitchell H. Taibleson, On the theory of Lipschitz spaces of distributions on Euclidean $n$-space. I. Principal properties, J. Math. Mech. 13 (1964), 407–479. MR 0163159
- N. Ja. Vilenkin, Special functions and the theory of group representations, Translations of Mathematical Monographs, Vol. 22, American Mathematical Society, Providence, R.I., 1968. Translated from the Russian by V. N. Singh. MR 0229863, DOI 10.1090/mmono/022
- Norman J. Weiss, Multipliers on compact Lie groups, Proc. Nat. Acad. Sci. U.S.A. 68 (1971), 930–931. MR 283499, DOI 10.1073/pnas.68.5.930
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 167 (1972), 115-124
- MSC: Primary 43A75
- DOI: https://doi.org/10.1090/S0002-9947-1972-0306823-9
- MathSciNet review: 0306823