MAPPINGS FROM 3-MANIFOLDS ONTO 3-MANIFOLDS (*)

BY

ALDEN WRIGHT

Abstract. Let f be a compact, boundary preserving mapping from the 3-manifold M^3 onto the 3-manifold N^3. Let Z_p denote the integers mod a prime p, or, if $p = 0$, the integers. (1) If each point inverse of f is connected and strongly 1-acyclic over Z_p, and if M^3 is orientable for $p > 2$, then all but a locally finite collection of point inverses of f are cellular. (2) If the image of the singular set of f is contained in a compact set each component of which is strongly acyclic over Z_p, and if M^3 is orientable for $p
eq 2$, then N^3 can be obtained from M^3 by cutting out of $\text{Int } M^3$ a compact 3-manifold with 2-sphere boundary, and replacing it by a Z_p-homology 3-cell. (3) If the singular set of f is contained in a 0-dimensional set, then all but a locally finite collection of point inverses of f are cellular.

I. Introduction. We suppose throughout the introduction that $f: M^3 \rightarrow N^3$ is a compact, boundary preserving mapping from the 3-manifold M^3 onto the 3-manifold N^3 (where M^3 and N^3 may or may not have boundary). Let Z_p denote the integers modulo a prime p, or, if $p = 0$, the integers.

If $f^{-1}(x)$ is connected and strongly 1-acyclic over Z_p for all $x \in N^3$, and if M^3 is orientable for $p > 2$, then in Corollary 1 it is shown that all but a locally finite collection of point inverses are cellular. This implies that N^3 can be obtained from M^3 by cutting out of $\text{Int } M^3$ a locally finite collection of compact 2-manifolds, each bounded by a 2-sphere, and replacing them by a 3-cell (see Corollary 3). Thus, if M^3 is compact, N^3 is a factor in a connected sum decomposition of M^3.

Now suppose that the image of the singular set of f is contained in a compact set X each component of which is strongly acyclic over Z_p. If M^3 is orientable for $p
eq 2$, then N^3 can be obtained from M^3 by cutting out of M^3 a finite number of compact 3-manifolds, each bounded by a 2-sphere, and replacing each by a Z_p-homology 3-cell. In particular, if X has a neighborhood which is an irreducible 3-manifold with boundary (or if N^3 is irreducible), then N^3 is a factor in a connected sum decomposition of M^3. This extends Theorem 1 of Lambert in [9]. In the special case where the image of the singular set is contained in a Cantor set,
we can say in addition that all but a finite number of point inverses are cellular. This was previously proved by the author using other techniques.

Lemma 5 restates one of Armentrout’s results on approximating cellular maps with homeomorphisms. Using this lemma, we combine the results of Theorems 1 and 3 in Theorem 5. Thus if M^3 is compact and orientable for $p \neq 2$, and if the image of the point inverses of f which are not connected and strongly 1-acyclic over Z_p is contained in a compact set X each component of which is strongly acyclic over Z_p, then N^3 can be obtained from M^3 by cutting out of Int M^3 a finite number of 3-manifolds each bounded by a 2-sphere, and replacing each by a Z_p-homology 3-cell. Theorem 6 combines Theorems 1 and 4 in a similar fashion.

In Theorem 7, we extend a result of McMillan [13] to show that if the image of the singular set of f is contained in a (nonclosed) 0-dimensional set, then all but a locally finite collection of point inverses are cellular.

Let G be a nontrivial abelian group. A compact set $X \subset M$ is strongly k-acyclic over G if for each open set $U \subset M$ containing X, there is an open set V such that $X \subset V \subset U$ and such that the inclusion induced homomorphism $i_* : H_k(V; G) \to H_k(U; G)$ is zero. (If X is connected and strongly k-acyclic over G for $1 \leq k \leq n$, then $X \subset M$ has property $w^k(G)$ in the sense of [8].) The compact set $X \subset M$ is strongly acyclic over G if it is connected and strongly k-acyclic over G for all $k \geq 1$.

We refer the reader to [13 (especially Lemma 1)] for further facts about strong acyclicity. In particular, for any positive integer k, a compact set X in the interior of a 3-manifold M^3 is strongly k-acyclic over G if and only if each component of X is strongly k-acyclic over G. Also X is strongly acyclic over Z if and only if X is connected and $H^*(X; Z) = 0$ (see [7]).

The compact set $X \subset M$ has property UV^n if for each open set $U \subset M$ containing X, there is an open set V such that $X \subset V \subset U$ and such that V is contractable in U. A set X in a 3-manifold M^3 is cellular in M^3 if $X = \bigcap_{i=1}^n F_i$ where each F_i is a 3-cell, and $F_{i+1} \subset Int F_i$ for all i.

If σ is a loop in a space M, we will denote its homology class in $H_1(M; G)$ by $[\sigma]$. The symbol Z_p for $p>0$ will denote the finite cyclic group of order p. The symbol Z_0 will denote the integers.

A manifold will be assumed to be connected and to have no boundary unless otherwise specified. We assume that all manifolds have a piecewise-linear structure. A 3-manifold is irreducible if every polyhedral 2-sphere in it bounds a polyhedral 3-cell. If M^3 and N^3 are 3-manifolds, possibly with boundary, the connected sum $M^3 \# N^3$ of M^3 and N^3 is obtained by removing the interior of a 3-cell from the interior of each, and then sewing the two manifolds together along the resulting boundary components, using an orientation reversing homeomorphism if M^3 and N^3 are oriented.

A map or mapping is a continuous function. A monotone map is a map all of whose point inverses are connected. A map $f : M \to N$ is compact (proper) if, for any compact set K in N, $f^{-1}(K)$ is compact. If $f : M \to N$ is a compact monotone
map, then the point inverses of M form a monotone upper semicontinuous decomposition of M whose associated decomposition space is homeomorphic to N. Conversely, if G is a monotone upper semicontinuous decomposition of M, the projection map $p: M \to M/G$ is a compact monotone map.

Let $\{X_a\}_{a \in A}$ be a collection of compact subsets of a space M. Then $\{X_a\}_{a \in A}$ is a **locally finite collection** if for $y \in M$, y has a neighborhood U which intersects only a finite number of elements of the collection.

11. Maps all of whose point inverses are strongly acyclic.

Lemma 1. If X is a compact connected subset of a space M and if X is strongly k-acyclic over \mathbb{Z} in M for $1 \leq k \leq n$, then X is strongly k-acyclic over \mathbb{Z}_p in M for $1 \leq k \leq n$ and for any prime $p > 1$.

Proof. Let W and V be chosen so that $X \subset W \subset V \subset U$ and so that the inclusion induced homomorphisms $i_*: H_k(V; \mathbb{Z}) \to H_k(U; \mathbb{Z})$ and $j_*: H_k(W; \mathbb{Z}) \to H_k(V; \mathbb{Z})$ are zero for $1 \leq k \leq n$. Consider the following commutative diagram:

$$
\begin{array}{ccc}
0 & \longrightarrow & H_k(W; \mathbb{Z}) \otimes \mathbb{Z}_p \\
\downarrow i_* \otimes \text{id} & & \downarrow i_* \\
0 & \longrightarrow & H_k(V; \mathbb{Z}) \otimes \mathbb{Z}_p \\
\downarrow j_* \otimes \text{id} & & \downarrow j_*' \\
0 & \longrightarrow & H_k(U; \mathbb{Z}) \otimes \mathbb{Z}_p \\
\end{array}
$$

The horizontal rows, which are exact, are from the universal coefficient theorem. By our choice of W and V, the outer vertical maps are zero. Using a diagram chasing argument, we see that $j_* i_*$ is the zero homomorphism.

Lemma 2. Let M^3 and N^3 be 3-manifolds, and let $f: M^3 \to N^3$ be a compact, monotone, onto map. Let p be 0 or a prime, and suppose M^3 is orientable if $p \neq 2$. If $f^{-1}(y)$ is strongly 1-acyclic over \mathbb{Z}_p for every $y \in N^3$, then each $f^{-1}(y)$ is strongly acyclic over \mathbb{Z}_p in M^3.

Proof. By Alexander duality and Theorem 3 of [8] we see that $H^k(f^{-1}(y); \mathbb{Z}_p) = 0$ for $k \geq 2$. Then the continuity of H^* and the universal coefficient theorem for cohomology show that $f^{-1}(y)$ is strongly acyclic over \mathbb{Z}_p for all $y \in N^3$. (For more details, see Theorems 4.4 and 3.2 of [7].)

Lemma 3. Let M^3 and N^3 be 3-manifolds, and $f: M^3 \to N^3$ be a compact, monotone, onto map such that $f^{-1}(y)$ is strongly 1-acyclic over \mathbb{Z}_p for each $y \in N^3$. If $H_1(N^3; G) = 0$, then $H_1(M^3; G) = 0$.

The proof of Lemma 3 is similar to the proof of Theorem 2.1 of [15].
If M^n and N^n are n-manifolds with boundary, a map $f: M^n \to N^n$ is said to be boundary preserving if $f|_{\text{Bd } M^n}$ is a homeomorphism of $\text{Bd } M^n$ onto $\text{Bd } N^n$, and if $f^{-1}(\text{Bd } N^n) = \text{Bd } M^n$. A 2-manifold with boundary S is properly embedded in a 3-manifold with boundary M^3 if $S \cap \text{Bd } M^3 = \text{Bd } S$.

A Z_p-homology (homotopy) 3-cell is a compact Z_p-acyclic (contractible) 3-manifold with boundary. A cube-with-handles is obtained by adding orientable 1-handles to a 3-cell. We define a Z_p-homology (homotopy) cube-with-handles similarly. We will say that a set X is the intersection of a decreasing sequence of $(Z_p$-homology, homotopy) cubes-with-handles if $X = \bigcap_{i=1}^\infty K_i^3$ where each K_i^3 is a $(Z_p$-homology, homotopy) cube-with-handles and $K_i^{3+1} \subset \text{Int } K_i^3$.

Theorem 1. Let p denote 0 or a prime, and let M^3 and N^3 be compact 3-manifolds, possibly with boundary, where M^3 is orientable if $p > 2$. Let $f: M^3 \to N^3$ be a monotone, onto, boundary preserving map. Let U be an open subset of N^3. If $f^{-1}(x)$ is strongly 1-acyclic over Z_p for all $x \in U$, then $\{x \in U : f^{-1}(x)$ is not cellular$\}$ is a finite set.

Remark. This theorem was first proved for $p = 0, 2$ in [16]. It has since been generalized by D. R. McMillan in [13].

Proof. The case where $p = 0$ reduces to the case where $p = 2$ by Lemma 1. By the proofs of Theorems 1 and 2 of [11] and by Kneser’s Theorem [6] it is sufficient to prove that $\{x \in U : f^{-1}(x)$ is not UV^∞\} is finite.

We can apply Lemma 2 to see that $f^{-1}(x)$ is strongly acyclic over Z_p for each $x \in U$. By Theorem 2 of [12], $f^{-1}(x)$ is the intersection of a decreasing sequence of Z_p-homology cubes-with-handles.

Let q be the rank (i.e. the minimum number of generators) of $\pi_1(M^3)$. By a corollary to the Grushko-Neumann Theorem (p. 192 of [10]), there are at most q disjoint Z_p-homology 3-cells in M^3 which are not homotopy 3-cells. Thus there are at most q points in U whose inverse images are not the intersection of a decreasing sequence of homotopy cubes-with-handles.

Let $x \in U$, where $f^{-1}(x)$ is the intersection of a decreasing sequence of homotopy cubes-with-handles. We will complete the proof by showing that $f^{-1}(x)$ is UV^∞. Let U' be an open set in M^3 containing $f^{-1}(x)$. There is a homotopy cube-with-handles H^3 such that

$$f^{-1}(x) \subset \text{Int } H^3 \subset H^3 \subset U' \cap f^{-1}(U).$$

Let W be an open 3-cell in U such that $x \in W$ and $f^{-1}(W) \subset \text{Int } H^3$. Define inductively G_0, G_1, G_2, \ldots by letting $G_0 = \pi_1(f^{-1}(W))$, and by letting

$$G_i = G_{i-1}(X_1 X_2 X_1^{-1} X_2^{-1} X_3^{\infty}).$$

(See p. 74 of [10] for notation.) In other words, G_i is the subgroup of G_{i-1} generated by all elements of the form $w u v^{-1} u^{-1} \tau^p$ where $u, v, \tau \in G_{i-1}$. Let F_0, F_1, F_2, \ldots be the corresponding subgroups of $\pi_1(H^3)$.
The subgroup G_1 certainly contains the commutator subgroup of G_0. The image of G_1 in $H_1(f^{-1}(W); Z)$ is $p \cdot H_1(f^{-1}(W); Z)$. Thus

$$\pi_1(f^{-1}(W)) / G_1 \cong H_1(f^{-1}(W); Z) / p \cdot H_1(f^{-1}(W); Z) \cong H_1(f^{-1}(W); Z_p).$$

Let $\delta \in \pi_1(f^{-1}(W))$. Since $H_1(f^{-1}(W); Z_p) = 0$ (by Lemma 3), $\delta \in G_1$. Thus δ is a product of elements of the form $u v u^{-1} v^{-1} \tau \rho$ where $u, v, \tau \in G_0$. By applying the same argument to $u, v, and \tau$, we see that $u, v, \tau \in G_1$. Thus $\delta \in G_2$. By repeating this argument, $\delta \in \bigcap_{n=0}^\infty G_1$. By Corollary 2.12 on p. 109 of [10], $\bigcap_{n=1}^\infty F_i = 1$. Thus $\delta = 1$ in $\pi_1(H^3)$, and $f^{-1}(x)$ is UV^∞.

Corollary 1. Let M^3 and N^3 be 3-manifolds, possibly with boundary, and let $f: M^3 \to N^3$ be a compact, monotone, boundary preserving, onto map. Let p denote 0 or a prime, and suppose that M^3 is orientable if $p > 2$. If $f^{-1}(x)$ is strongly 1-acyclic over Z_p in M^3 for all $x \in U$, then $\{x \in U : f^{-1}(x)$ is not cellular$\}$ is a locally finite set in N^3.

III. Maps where the image of the singular set lies in a strongly acyclic set. We state below a slightly strengthened version of Theorem 2 of [13]: here we assume that M^3 is orientable only if $p > 2$, and thus the 1-handles which are attached to $\text{Bd} \ Q_i$ to obtain H_i may be attached in a nonorientable fashion. (See the statement of Theorem 2 for the definition of Q_i and H_i.) The only additional difficulty in the proof is when we have $S_i \subset \text{Bd} \ Z_p^*$ and $S_k \subset \text{Bd} \ Z_k^*$ topologically parallel. (See p. 133 of [12].) As before, each loop in $S_i Z_p$-bounds in Z_p^*, and the same argument shows that S_i is a 2-sphere if S_i is not homeomorphic to a projective plane. But if S_i is a projective plane, it must contain an orientation-reversing simple closed curve since S_i is two-sided. This contradicts the fact that every simple closed curve in $S_i Z_p$-bounds in Z_p^*, since $p = 0, 2$.

Theorem 2. Let p denote 0 or a prime. Let X be a compact, proper subset of $\text{Int} \ M^3$, where M^3 is a 3-manifold, possibly with boundary. Suppose M^3 is orientable if $p > 2$, and suppose that X has the following property relative to M^3 and p. For each open set $U \subset M^3$ with $X \subset U$, there is an open set $V, X \subset V \subset U$, such that, under inclusion, $H_1(V - X; Z_p) \to H_1(U; Z_p)$ is zero. Then $X = \bigcap_{i=1}^\infty H_i$, where H_i is a compact polyhedron in M^3, each component of H_i is a 3-manifold with nonempty boundary, $H_{i+1} \subset \text{Int} \ H_i$ and each H_i has the following structure: it is obtained from a compact polyhedron Q_i, each component of which is a 3-manifold whose boundary consists entirely of 2-spheres, by adding to $\text{Bd} \ Q_i$, a finite number of (solid, possibly nonorientable) 1-handles.

Let $f: M \to N$ be a map. Then let $S_f = \{x \in M : f^{-1}(x)$ is nondegenerate$\}$.

Theorem 3. Let p denote 0 or a prime. Let M^3 and N^3 be piecewise-linear 3-manifolds, possibly with boundary, where M^3 is orientable if $p \neq 2$. Let X be a compact subset of $\text{Int} \ N^3$ such that each component of X is strongly acyclic over Z_p. Let $f: M^3 \to N^3$ be a compact, boundary preserving map with $f(S_f) \subset X$. Then N^3 can
be obtained from M^3 by cutting out of Int M^3 a finite number of polyhedral 3-manifolds which are each bounded by a 2-sphere, and replacing each by a polyhedral Z_p-homology 3-cell.

Proof. By Theorem 2 of [12], X is the intersection of a decreasing sequence of Z_p-homology cubes-with-handles. Thus we can assume that N^3 is a Z_p-homology cube-with-handles, and that each two-sided surface in Int N^3 separates N^3.

The first half of the proof will be to show that $f^{-1}(X)$ has the following property in Int M^3: for each open set $U \subseteq$ Int M^3 with $f^{-1}(X) \subseteq U$, there is an open set V, with $f^{-1}(X) \subseteq V \subseteq U$, such that, under inclusion, $H_1(V - f^{-1}(X); Z_p) \rightarrow H_1(U; Z_p)$ is zero.

Let U be an open set in Int M^3 with $f^{-1}(X) \subseteq U$. Since $Cl(M) \subseteq U$, $f(U)$ is open. Let Z^3 be a compact polyhedron in $f(U)$ such that each component of Z^3 is a 3-manifold with boundary, and such that $X \subseteq$ Int Z^3. Since X is strongly 1-acyclic over Z_p, there is an open set W containing X such that, under inclusion

$$H_1(W - X; Z_p) \rightarrow H_1(Z^3; Z_p)$$

is zero.

Let $V = f^{-1}(W)$, and let $[\sigma] \in H_1(V - f^{-1}(X); Z_p)$ where we can assume that σ is a finite, pairwise disjoint collection of (oriented, if $p \neq 2$) simple closed curves such that $f(\sigma)$ is polyhedral in Z^3. Let F^3 be a regular neighborhood of $f(\sigma)$ in (Int Z^3) $- X$. We can triangulate Z^3 so that F^3 and $f(\sigma)$ are subcomplexes of the triangulation. Then the homeomorphism $f^{-1}((Bd Z^3 \cup F^3)$ induces a triangulation of $f^{-1}(Bd Z^3 \cup F^3)$. Since each of the finite number of components of $f^{-1}(Z^3)$ is a 3-manifold with boundary, by Theorem 5 of [2] there is a triangulation of $f^{-1}(Z^3)$ which is compatible with the above triangulation of $f^{-1}(Bd Z^3 \cup F^3)$. Using the relative simplicial approximation theorem, there is a piecewise-linear, nondegenerate map g from $f^{-1}(Z^3)$ onto Z^3 such that

$$g \mid f^{-1}(Bd Z^3 \cup F^3) = f \mid f^{-1}(Bd Z^3 \cup F^3),$$
$$g^{-1}(Bd Z^3 \cup F^3) = f^{-1}(Bd Z^3 \cup F^3).$$

By subdividing we can assume that g is simplicial.

At this point we divide the remainder of the first half of the proof into three cases: Case 1 ($p = 0$), Case 2 ($p = 2$), and Case 3 ($p > 2$).

Case 1 ($p = 0$). Since $f(\sigma) \subseteq W - X$, $[f(\sigma)] = 0$ in $H_1(Z^3; Z)$. Thus $f(\sigma)$ must bound a 2-complex L^2 in Z^3 where each component of L^2 is an orientable, two-sided 2-manifold with boundary. We can adjust L^2 slightly so that it is in general position mod $f(\sigma)$ with respect to our last triangulation of Z^3. Then $g^{-1}(L^2)$ will be a 2-complex in $f^{-1}(Z^3) \subseteq U$, where each component of $g^{-1}(L^2)$ is a two-sided 2-manifold with boundary. Thus, since M^3 is orientable, each component of $g^{-1}(L^2)$ is orientable. Since σ bounds $g^{-1}(L^2)$, $[\sigma] = 0$ in $H_1(U; Z)$, and the inclusion-induced homomorphism $H_1(V - f^{-1}(X); Z) \rightarrow H_1(U; Z)$ is trivial.
Case 2 \((p=2)\). The proof is essentially the same as Case 1, except that \(L^2\) and \(g^{-1}(L^2)\) may not be orientable.

Case 3 \((p > 2)\). Note that

\[
H_1(Z^3; Z) / G \simeq H_1(Z^3; Z) \otimes Z_p \simeq H_1(Z^3; Z_p)
\]

where \(G\) is the subgroup of \(H_1(Z^3; Z)\) generated by elements of the form \(p[y]\) where \([y] \in H_1(Z^3; Z)\). Since \([f(\sigma)] = 0\) in \(H_1(Z^3; Z_p)\), there is a 1-cycle \([\tau] \in H_1(Z^3; Z)\) so that \([f(\sigma)] = p[\tau]\) in \(H_1(Z^3; Z)\). We can assume that \(\tau\) is a finite, pairwise disjoint collection of polyhedral, oriented, simple closed curves which are in general position with respect to our last triangulation of \(Z^3\). Then \(g^{-1}(\tau)\) is a finite, pairwise disjoint collection of simple closed curves in \(f^{-1}(Z^3)\). We can find a regular neighborhood \(T^3\) of \(\tau\) so close to \(\tau\) that \(g^{-1}(T^3)\) is a regular neighborhood of \(g^{-1}(\tau)\). We can find a 1-cycle \([\delta] \in H_1(Bd T^3; Z)\) so that \([f(\sigma)] = [\delta]\) in \(H_1(Z^3 - Int T^3; Z)\). We can assume that \(\delta\) is a finite collection of mutually exclusive, oriented, simple closed curves on \(Bd T^3\). Then there is a 2-complex \(L^2 \subset Z^3 - Int T^3\) where each component of \(L^2\) is a two-sided, orientable, 2-manifold, and where \(Bd L^2 = f(\sigma) \cup \delta\) (homologically \(f(\sigma) - \delta\)). We can assume that \(L^2\) is in general position mod \(f(\sigma)\) with respect to our last triangulation of \(Z^3\). Then \(g^{-1}(L^2)\) will be a 2-complex where each component of \(g^{-1}(L^2)\) is a two-sided 2-manifold with boundary. Thus \(g^{-1}(L^2)\) is orientable.

Since \(L^2\) is two-sided in \(Z^3\), \(\delta\) is two-sided in \(Bd T^3\). Thus \(g^{-1}(\delta)\) is two-sided in \(g^{-1}(Bd T^3)\), and using this two-sidedness, we can induce an orientation of \(g^{-1}(\delta)\) which is consistent with that on \(g^{-1}(L^2)\). Thus \([g^{-1}(\delta)] = [\sigma]\) in \(H_1(f^{-1}(Z^3); Z)\).

Let \(\alpha\) be a meridional curve on \(Bd T^3\) which is in general position with respect to \(\delta\). Then \(\alpha\) will intersect \(\delta\) algebraically \(\pm p\) times. Since the two-sidedness of \(\delta\) is preserved by \(g^{-1}\), each component of \(g^{-1}(\alpha)\) which is a meridional curve must intersect \(g^{-1}(\delta)\) algebraically \(\pm p\) times. Thus, \([g^{-1}(\delta)] = p[g^{-1}(\tau)]\) in \(H_1(T^3; Z)\).

Therefore, \([\sigma] = p[g^{-1}(\tau)]\) in \(H_1(Z^3; Z)\), and the inclusion-induced homomorphism \(H_1(V - X; Z_p) \to H_1(U; Z_p)\) is trivial. This completes Case 3.

By Theorem 2, we can find a compact polyhedron \(H_0^3\), where each component of \(H_0^3\) is a 3-manifold with nonempty boundary, and where \(H_0^3\) has the following structure: it is obtained from a compact polyhedron \(Q_0^3\), each component of which is a 3-manifold whose boundary consists entirely of 2-spheres, by adding to \(Bd Q_0^3\) a finite number of (solid, possibly nonorientable) 1-handles.

We can also assume that each 1-handle is attached to only one boundary component of \(Bd Q_0^3\) since we can add 1-handles to \(Bd Q_0^3\) which join different components of \(Bd Q_0^3\) without destroying the property that \(Bd Q_0^3\) consists entirely of 2-spheres.

We claim that each component of \(Bd Q_0^3\) separates \(M^3\). For suppose that \(S_0\) is a component of \(Bd Q_0^3\) that does not separate \(M^3\). Then there is a polyhedral simple closed curve \(J\) which intersects \(S_0\) at exactly one point which is a piercing point.

It is easy to see that we can choose \(J\) so that it does not intersect any of the 1-handles.
which are added to \(Q^3_0\) to obtain \(H^3_0\). Let \(S_1\) be the component of \(\text{Bd} \ H^3_0\) which is obtained from \(S_0\) by adding handles. Then \(J\) intersects \(S_1\) only in the same piercing point. Since \(f^{-1}\|f(\text{Bd} \ H^3_0)\) is a homeomorphism, \(f(J)\) is a loop in \(N^3\) which intersects \(f(S_1)\) in exactly one piercing point. Thus \(f(S_1)\) does not separate \(N^3\). But \(f(S_1)\) is a 2-sided surface in \(N^3\), so \(f(S_1)\) must separate \(N^3\). This is a contradiction, so \(S_0\) does separate \(M^3\).

Let \(Q^3\) be the closure of the “inside” complementary domains of the “outermost” boundary components of \(Q^3_0\). (Here, “inside” and “outermost” are relative to \(\text{Bd} \ M^3\), which is connected.) Thus we have “filled in the holes” in \(Q^3_0\) to obtain \(Q^3\), and each component of \(Q^3\) has connected boundary. We define \(H^3\) to be \(Q^3\) union the 1-handles of \(H^3_0 - Q^3_0\) which are not already contained in \(Q^3\).

There are properly embedded polyhedral disks \(B^2_1, \ldots, B^2_t\) in \(H^3\) such that the 1-handles which are added to \(Q^3\) to obtain \(H^3\) are regular neighborhoods of \(B^2_1, \ldots, B^2_t\) in \(H^3\). Let these 1-handles be \(N(B^2_1), \ldots, N(B^2_t)\). Each \(B^2_i\) is mapped properly into \(f(H^3)\) by \(f\), and furthermore, \(f(B^2_i)\) has no singularities near \(\text{Bd} \ B^2_i\). So by Dehn’s Lemma, there exist nonsingular properly embedded polyhedral disks \(D^2_1, \ldots, D^2_t\) in \(f(H^3)\) with \(\text{Bd} \ D^2_i = f(\text{Bd} B^2_i)\). By a cutting and pasting argument, we can choose \(D^2_1, \ldots, D^2_t\) to be disjoint. We can also find disjoint regular neighborhoods \(N(D^2_1), \ldots, N(D^2_t)\) of \(D^2_1, \ldots, D^2_t\) in \(f(H^3)\) so that

\[
f(N(B^2_i) \cap \text{Bd} \ H^3) = N(D^2_i) \cap \text{Bd} f(H^3).
\]

For each \(i\), there is a homeomorphism \(h_i: f(\text{Bd} B^2_i) \to N(D^2_i)\) such that

\[
h_i| (\text{Bd} H^3 \cap N(B^2_i)) = f| (\text{Bd} H^3 \cap N(B^2_i)).
\]

We define a homeomorphism

\[
h: M^3 - \text{Int} \ Q^3 \to (N^3 - \text{Int} f(H^3)) \cup \left(\bigcup_{i=1}^r N(D^2_i) \right)
\]

by \(h| (M^3 - \text{Int} \ H^3) = f| (M^3 - \text{Int} \ H^3)\), and by \(h| N(B^2_i) = h_i\) for each \(i = 1, \ldots, r\).

Then \(h(\text{Bd} Q^3)\) is a finite disjoint collection of 2-spheres in \(N^3\) each of which bounds a \(Z_p\)-homology 3-cell. Furthermore, these homology 3-cells are disjoint since each component of \(h(\text{Bd} Q^3)\) is outermost in the sense that it can be joined to \(\text{Bd} N^3\) with an arc which misses \(h(\text{Bd} Q^3)\) except at one end point.

Let \(K^3_1, \ldots, K^3_k\) be these homology 3-cells, and let \(Q^3_1, \ldots, Q^3_m\) be the corresponding components of \(Q^3\) so that \(h^{-1}(\text{Bd} K^3_i) = \text{Bd} Q^3_i\). Each \(Q^3_i\) is a 3-manifold with 2-sphere boundary. Then \(h\) is a homeomorphism from \(M^3 - (\bigcup_{i=1}^k Q^3_i)\) onto \(N^3 - (\bigcup_{i=1}^m K^3_i)\). Thus we obtain \(N^3\) from \(M^3\) by cutting out the \(Q^3_i\)'s and replacing each with the corresponding \(K^3_i\).

Remark. If we define \(*Q^3_i\) to be the closed 3-manifold obtained from \(Q^3_i\) by sewing a 3-cell onto \(\text{Bd} Q^3_i\), and if we define \(*K^3_i\) to be the closed 3-manifold obtained from \(K^3_i\) in the same way, then

\[
M^3 \# *K^3_1 \# \cdots \# *K^3_m \cong N^3 \# *Q^3_1 \# \cdots \# *Q^3_m.
\]
We should also note that we have shown that for any open set U in M^3 which contains X, then $f^{-1}(X)$ has a polyhedral neighborhood $H^3 \subset U$ where each component of H^3 is formed by adding 1-handles to a 3-manifold with 2-sphere boundary. Furthermore, we have shown that these 1-handles are attached in an orientable fashion to the 2-sphere boundary.

Corollary 2. Let M^3 and N^3 be compact 3-manifolds, possibly with boundary. Let X be a compact proper set in $\text{Int } N^3$ with the following property: For each open set $U \subset \text{Int } N^3$ with $X \subset U$, there is an open set $V, X \subset V \subset U$, such that under inclusion $H_1(V - X; \mathbb{Z}_p) \rightarrow H_1(V; \mathbb{Z}_p)$ is zero. Suppose also that X has a polyhedral neighborhood each component of which is an orientable, irreducible 3-manifold with boundary. If there is a boundary preserving map f from M^3 onto N^3 such that $f(S_1) \subset X$, then M^3 can be obtained from N^3 by removing the interiors of a finite number of 3-manifolds each of which is bounded by a 2-sphere, and by replacing each by a 3-cell.

Proof. By using Theorem 2 and the fact that X has a polyhedral neighborhood each component of which is an irreducible 3-manifold with boundary, we see that X has a polyhedral neighborhood each component of which is a cube-with-handles. Thus we can assume that N^3 is a cube-with-handles. The remainder of the proof of Theorem 3 now goes through with the weaker hypothesis on X.

Theorem 4. Let M^3 and N^3 be 3-manifolds, possibly with boundary, and let $f: M^3 \rightarrow N^3$ be an onto, compact, boundary preserving mapping from M^3 onto N^3 such that $f(S_1) \subset X$ where X is a closed 0-dimensional set in N^3. Then f is monotone, and $\{x \in N^3 : f^{-1}(x) \text{ is not cellular in } M^3 \}$ is a locally finite subset of N^3.

Proof. Let $x \in X$, and let U be an arbitrarily small open 3-cell containing x. Then there is a polyhedral 3-manifold with boundary K^3 so that $x \in \text{Int } K^3 \subset K^3 \subset U$ and so that $\text{Bd } K^3 \cap X = \emptyset$. In fact, using Theorem 2 of [12] and the fact that U is irreducible, we can see that K^3 can be chosen to be a cube-with-handles. Then $f^{-1}(K^3)$ is a connected neighborhood of $f^{-1}(x)$ which can be chosen “arbitrarily close” to $f^{-1}(x)$. Thus f is monotone.

We can cover X with the interiors of a locally finite collection of mutually exclusive collection of cubes-with-handles. Thus, in order to prove the theorem, it suffices to consider the case where N^3 is a cube-with-handles, and where M^3 is a compact 3-manifold with connected boundary. In this case, we will prove that all but a finite number of point inverses of f are cellular.

The set X is strongly 1-acyclic over Z_2 in N^3, and thus by the remark following the proof of Theorem 3, we have $f^{-1}(X) = \bigcap_{i=1}^\infty H^3_i$, where H^3_i is a 3-manifold with connected boundary, and where $H^3_i \subset \text{Int } H^3_{i-1}$. We can assume that H^3_i is obtained from a compact polyhedron Q^3_i where each component of Q^3_i is a 3-manifold with 2-sphere boundary, by adding to $\text{Bd } Q^3_i$ a finite number of (orientable, solid) 1-handles. We also have that each 1-cycle in $\text{Bd } H^3_i$ bounds in $\text{Int } H^3_{i-1}$. We have assumed that M^3 is compact and that $H_1(M^3; Z_2)$ is finitely generated;
so it is easy to show that there is an integer \(N \) so that there are not more than \(N \) disjoint 3-manifolds with 2-sphere boundary and nontrivial \(\mathbb{Z}_2 \)-homology in \(\text{Int} M^3 \). Therefore, all but at most \(N \) components of \(f^{-1}(X) \) are the intersection of a decreasing sequence of \(\mathbb{Z}_2 \)-homology cubes-with-handles.

If \(Z_2^p \) is a \(\mathbb{Z}_2 \)-homology cube-with-handles, the inclusion-induced homomorphism \(H_1(\text{Bd} Z_2^p; \mathbb{Z}_2) \to H_1(Z_2^p; \mathbb{Z}_2) \) is onto. Thus, if \(Z_2^p \subset \text{Int} Z_2^{p-1} \) where \(Z_2^{p-1} \) is another \(\mathbb{Z}_2 \)-homology cube-with-handles, and if each 1-cycle in \(\text{Bd} Z_2^p \) \(\mathbb{Z}_2 \)-bounds in \(\text{Int} Z_2^{p-1} \), then the inclusion-induced homomorphism \(H_1(Z_2^p; \mathbb{Z}_2) \to H_1(Z_2^{p-1}; \mathbb{Z}_2) \) is trivial. Therefore, each component of \(f^{-1}(X) \) which is the intersection of \(\mathbb{Z}_2 \)-homology cubes-with-handles must be strongly 1-acyclic over \(\mathbb{Z}_2 \). This shows that at most a finite number of point inverses of \(f \) are not strongly 1-acyclic over \(\mathbb{Z}_2 \).

We can now apply Theorem 1 which implies that only a finite number of the strongly 1-acyclic over \(\mathbb{Z}_2 \) point inverses of \(f \) are not cellular.

IV. Maps almost all of whose point inverses are strongly 1-acyclic over \(\mathbb{Z}_p \).

Lemma 4. Let \(f: M \to N \) be a compact map from a metric space \(M \) onto a metric space \(N \). Let \(X \) be a closed set in \(N \). Let \(G \) be a decomposition of \(M \) defined by
\[
G = \{ f^{-1}(y) : y \in X \} \cup \{ x \in M : f(x) \notin X \}.
\]
Let \(Q = M/G \) and let \(\pi: M \to Q = M/G \) be the projection map for the decomposition \(G \). Let \(p: Q \to N \) be defined so as to make the following diagram commute:
\[
\begin{array}{ccc}
M & \xrightarrow{\pi} & Q \\
\downarrow f & & \downarrow p \\
N & & \\
\end{array}
\]
Then
1. \(G \) is upper semicontinuous and hence \(\pi \) is continuous and compact.
2. The decomposition \(\{ p^{-1}(y) : y \in N \} \) is upper semicontinuous and hence \(p \) is continuous and compact.

Proof. Lemma 4 follows from the fact that \(\{ f^{-1}(y) : y \in N \} \) is an upper semicontinuous decomposition of \(M \).

Lemma 5. Let \(p: Q \to N^3 \) be a compact, monotone map from a metric space \(Q \) onto a 3-manifold \(N^3 \), possibly with boundary. Let \(X \) be a closed set in \(N^3 \) containing \(\text{Bd} N^3 \). Suppose that \(p|_{p^{-1}(X)} \) is a homeomorphism, and that \(W = Q - p^{-1}(X) \) is an open 3-manifold. If \(p^{-1}(x) \) is cellular for all \(x \in N^3 - X \), then there is a homeomorphism \(h: N^3 \to Q \) such that \(h|X = p^{-1}|X \).

The proof of Lemma 9 is the same as the proof of Theorem 1 of [1].

Suppose \(f: M^3 \to N^3 \) is a mapping. We let \(A^p_f = \{ x \in M^3 : f^{-1}f(x) \) is either not connected or is not strongly 1-acyclic over \(\mathbb{Z}_p \) \).
Theorem 5. Let \(p \) denote 0 or a prime, and let \(M^3 \) and \(N^3 \) be compact 3-manifolds, possibly with boundary, where \(M^3 \) is orientable if \(p \neq 2 \). Let \(Y \) be a compact set in \(\text{Int } N^3 \) each component of which is strongly acyclic over \(\mathbb{Z}_p \). Let \(f: M^3 \to N^3 \) be an onto, boundary preserving map such that \(f(A^3) \subset Y \). Then \(N^3 \) can be obtained from \(M^3 \) by cutting out of \(M^3 \) a finite number of polyhedral 3-manifolds, each bounded by a 2-sphere, and replacing each by a \(\mathbb{Z}_p \)-homology 3-cell.

Proof. By Theorem 1 there are only a finite number of points \(x_1, x_2, \ldots, x_n \) in \(N^3 - Y \) whose inverses under \(f \) are not cellular in \(M^3 \). Let
\[
X = Y \cup \{ x_1, x_2, \ldots, x_n \} \cup \text{Bd } N^3.
\]
We use this \(X \) to define \(Q, \pi: M^3 \to Q, \) and \(p: Q \to N^3 \) as in Lemma 4. Since \(\pi(M^3 - f^{-1}(X)) \) is a homeomorphism from \(M^3 - f^{-1}(X) \) onto \(W = Q - p^{-1}(X) \), \(W \) is an open 3-manifold. And since \(p|p^{-1}(X) \) is one-to-one and continuous, \(p|p^{-1}(X) \) is a homeomorphism. Therefore, by Lemma 5, there is a homeomorphism \(h: N^3 \to Q \). In particular, \(Q \) is a 3-manifold \(Q^3 \). Let
\[
X' = Y \cup \{ x_1, \ldots, x_n \}.
\]
Then \(\pi(S_a) \cap p^{-1}(X') = h(X') \), and \(X' \) is strongly acyclic over \(\mathbb{Z}_p \), so the map \(\pi \) satisfies the hypotheses of Theorem 3.

Theorem 6. Let \(p \) denote 0 or a prime, and let \(M^3 \) and \(N^3 \) be 3-manifolds, possibly with boundary, where \(M^3 \) is orientable if \(p > 2 \). Let \(Y \) be a closed 0-dimensional set in \(\text{Int } N^3 \), and let \(f: M^3 \to N^3 \) be an onto, compact, boundary preserving map such that \(f(A^3) \subset Y \). Then \(\{ x \in N^3 : f^{-1}(x) \text{ is not cellular in } M^3 \} \) is a locally finite subset of \(N^3 \).

Proof. By Corollary 1, the set \(\{ x \in N^3 - Y : f^{-1}(x) \text{ is not cellular in } M^3 \} \) is a locally finite subset of \(N^3 \).

Let
\[
X = Y \cup \text{Bd } N^3 \cup \{ x \in N^3 - Y : f^{-1}(x) \text{ is not cellular} \}.
\]
Let \(Q, \pi: M^3 \to Q, p: Q \to N^3, \) and \(h: N^3 \to Q \) be defined as in Lemmas 4 and 5. Let
\[
X' = Y \cup \{ x \in N^3 - Y : f^{-1}(x) \text{ is not cellular} \}.
\]
Then \(\pi(S_a) \cap p^{-1}(X') = h(X') \), and thus \(\pi(S_a) \) is contained in a closed 0-dimensional set in \(Q \). Theorem 4 can be applied to the map \(\pi: M^3 \to Q^3 \) to say that
\[
\{ y \in Q^3 : \pi^{-1}(y) \text{ is not cellular in } M^3 \}
\]
is a locally finite subset of \(Q^3 \). The image under \(p \) (or \(h^{-1} \)) of this set is
\[
\{ x \in N^3 : f^{-1}(x) \text{ is not cellular in } M^3 \}
\]
which must then be a locally finite subset of \(N^3 \).
V. Further applications. The following lemma is a slight generalization of Lemma 5 of [13]. While the proof of Lemma 5 of [13] suffices to prove our Lemma 6, a proof is included here for completeness and since part of the proof will be needed to prove Theorem 7.

Lemma 6. Let M^3 and N^3 be 3-manifolds. Let $f: M^3 \to N^3$ be a compact, monotone mapping so that $f(S_t)$ is 0-dimensional. Let $x \in N^3$. If there is an open set U containing $f^{-1}(x)$ so that the inclusion-induced homomorphism from $H_1(U; Z)$ into $H_1(M^3; Z)$ is trivial, then $f^{-1}(x)$ is strongly 1-acyclic over Z.

Proof. Let B^3 be an open 3-cell in N^3 with compact closure so that $x \in B^3$ and $W=f^{-1}(B^3)$ is contained in U. Let K_1, K_2, K_3, \ldots be a locally finite collection of compact sets in W so that $\bigcup_{i=1}^{\infty} K_i = W$ and each K_i is contained in an open 3-cell $B_i \subset W$. Let

$$e_i = \inf \{ \rho(x, y) : x \in K_i \text{ and } y \in W - B^3 \}$$

where ρ is a metric on M^3. Let

$$C_i = \{ x \in N^3 : \text{diam} (f^{-1}(x)) \geq e_i \text{ and } f^{-1}(x) \cap K_i \neq \emptyset \}.$$

It is easy to see that each C_i is a closed set. Let $C = \bigcup_{i=1}^{\infty} C_i$.

We will show that $\{f(K_i)\}$ is a locally finite collection in B^3. Let $x_0 \in B^3$ and let V be a neighborhood of x_0 in B^3 with compact closure. Since f is a compact map, $f^{-1}(V)$ has compact closure. Since $\{K_i\}$ is a locally finite collection in W, $f^{-1}(V)$ intersects only a finite number of the K_i's, and thus V intersects only a finite number of the $f(K_i)$'s. Using the fact the $\{f(K_i)\}$ is a locally finite collection, we see that C is a closed 0-dimensional subset of B^3.

Consider the following commutative diagram where the horizontal maps are induced by inclusion, and the vertical maps are induced by f.

$$
\begin{array}{ccc}
H_1(W - f^{-1}(C); Z) & \xrightarrow{\alpha} & H_1(W; Z) \\
| & & | \\
H_1(B^3 - C; Z) & \longrightarrow & H_1(B^3; Z)
\end{array}
$$

First, we claim that α is an epimorphism. Let $[\delta] \in H_1(W; Z)$ where δ is a simple closed curve. Let O be an open set in B^3 so that $f(\delta) \subset O$ and $(\text{Bd } O) \cap C = \emptyset$. By applying Lemma 2 of [13], we see that δ is homologous in $f^{-1}(O)$ to a 1-cycle in $f^{-1}(O) - f^{-1}(O \cap C) \subset W - f^{-1}(C)$.

Finally, we claim that α is the zero homomorphism. Let $[\tau] \in H_1(W - f^{-1}(C); Z)$ where τ is a simple closed curve. We can also suppose that $f(\tau)$ is a simple closed curve, and that $f(\tau)$ bounds an orientable surface S in $B^3 - C$. By our choice of the δ_i's, for each $y \in B^3 - C$, there is an open set V_y so that $f^{-1}(V_y)$ is contractible in W. Let $\mathcal{V} = \{ V_y : y \in B^3 - C \}$. We can find a triangulation T of S which is so fine that
for each 2-simplex $\sigma \in T$, there is a $V_\sigma \in V$ so that $\sigma \subseteq V_\sigma$. Using the fact that f is monotone, we can find a map h from the 1-skeleton of T into $W - f^{-1}(C)$ so that, if σ is a 2-simplex of T, $h(\partial \sigma) \subseteq f^{-1}(V_\sigma)$. (See the proof of Theorem 2.1 of [15] for details.) We can also suppose that $hf|_\tau = \text{id}$. Since each V_σ is contractible in W, h can be extended to a map H which takes the surface S into W and which takes ∂S onto τ. Thus, $a[\tau] = 0$ in $H_1(W; \mathbb{Z})$.

Theorem 7. Let M^3 and N^3 be 3-manifolds, possibly with boundary. Let f be a compact, monotone, boundary preserving mapping from M^3 onto N^3 such that $f(S_f)$ is 0-dimensional. Then $\{x \in N^3 : f^{-1}(x) \text{ is not cellular}\}$ is a locally finite subset of N^3.

Proof. By a procedure similar to the first part of the proof of Lemma 6, we can find a closed set $C \subseteq f(S_f) \subseteq N^3$ so that, if $x \notin C$, then there is an open set U_x where $f^{-1}(x) \subseteq U_x$ and U_x is contractible in M^3. By Lemma 6, if $x \in N^3 - C$, then $f^{-1}(x)$ is strongly 1-acyclic over \mathbb{Z}. Thus $f(A^0) \subseteq C$, and C is a closed 0-dimensional set. Theorem 7 now follows from Theorem 6.

Let $f: M^3 \to N^3$ be an onto, compact, boundary preserving map as before. Many of our earlier results have shown that $\{x \in N^3 : f^{-1}(x) \text{ is not cellular in } M^3\}$ is a locally finite subset of N^3. The following three corollaries concern mappings of this type.

Corollary 3. Let M^3 and N^3 be 3-manifolds, possibly with boundary. Let $f: M^3 \to N^3$ be a compact, monotone, boundary preserving map such that $\{x \in N^3 : f^{-1}(x) \text{ is not cellular}\}$ is a locally finite subset of N^3. Then

(i) For each $x \in N^3$ and each open set U containing $f^{-1}(x)$, there is an open set V with $f^{-1}(x) \subseteq V \subseteq U$, such that $V - f^{-1}(x)$ is homeomorphic to $S^2 \times (0, 1)$.

(ii) N^3 can be obtained from M^3 by cutting out of M^3 a locally finite collection of mutually exclusive, polyhedral 3-manifolds, each with 2-sphere boundary, and replacing each by a 3-cell.

Proof. (i) If $f^{-1}(x)$ is cellular, this follows from Theorem 1 of [3].

Let x_1, x_2, x_3, \ldots be the points in N^3 such that $f^{-1}(x_i)$ is not cellular for $i = 1, 2, 3, \ldots$. Let $X = \{x_1, x_2, x_3, \ldots\} \cup \text{Bd } N^3$. Let the 3-manifold Q^3, the maps $\pi: M^3 \to Q^3$, $p: Q^3 \to N^3$, and the homeomorphism $h: N^3 \to Q^3$ be defined as in Lemmas 4 and 5. It will be sufficient to show that $f^{-1}(x_i)$ has the required neighborhood. We are given an open set $U \supseteq f^{-1}(x_1)$. Let U' be an open set in M^3 so that $f^{-1}(x_i) \subseteq U' \subseteq U$ and $U' \cap f^{-1}(x_i) = \emptyset$ for $i \geq 2$. Then $h^{-1}(p(U'))$ is an open set containing x_1 in N^3. Let W be an open 3-cell so that $x_1 \subseteq W \subseteq h^{-1}(p(U'))$. Let $V = \pi^{-1}h(W)$. Then $V - f^{-1}(x_1)$ is homeomorphic by $\pi^{-1}h$ to $W - \{x_1\}$ which is homeomorphic to $S^2 \times (0, 1)$.

(ii) As in part (i) let x_1, x_2, x_3, \ldots be the points of N^3 whose inverses are not cellular. We can find pairwise disjoint closed neighborhoods K_1, K_2, K_3, \ldots of $f^{-1}(x_1), f^{-1}(x_2), f^{-1}(x_3), \ldots$ respectively so that $K_i - f^{-1}(x_i)$ is homeomorphic to $S^2 \times (0, 1]$. Then each K_i is a 3-manifold with 2-sphere boundary, and $\pi|_{K_i}$ is a
boundary preserving map of K_i onto a 3-cell. Furthermore, $\pi|_{M^3 - \bigcup_{i=1}^n K_i}$ is a homeomorphism. Thus Q^3 can be obtained by cutting K_1, K_2, K_3, \ldots out of M^3, and replacing each by a 3-cell.

Corollary 4. Let M^3 and N^3 be compact 3-manifolds, possibly with boundary. Let $f: M^3 \to N^3$ be a boundary preserving, onto map such that $\{x \in N^3 : f^{-1}(x) \text{ is not cellular in } M^3\}$ is a finite set. If M^3 is homeomorphic to N^3, then $f^{-1}(x)$ is cellular for every $x \in N^3$.

Proof. By Corollary 3, part (ii), there are closed 3-manifolds $*K^3_0, \ldots, *K^3_n$ such that

$$M^3 = N^3 \# *K^3_0 \# \cdots \# *K^3_n.$$

By a corollary to the Grushko-Neumann Theorem (see p. 192 of [10]), the rank of $\pi_1(M^3)$ is equal to the sum of the ranks of $\pi_1(N^3), \pi_1(K^3_0), \ldots, \pi_1(K^3_n)$. Therefore

$$\pi_1(*K^3_0) = \cdots = \pi_1(*K^3_n) = 1,$$

and each $*K^3_i$ ($i=0, \ldots, n$) is a homotopy 3-sphere.

If M^3 is closed and orientable, we use the unique decomposition theorem of Milnor [14] to show that $*K^3_0, \ldots, *K^3_n$ are all 3-spheres. This shows that $f^{-1}(x)$ is cellular for every $x \in N^3$.

If M^3 is orientable with boundary, we can sew a cube-with-handles onto each boundary component of M^3 to obtain a closed manifold M^3_0. The homeomorphism from M^3 to N^3 induces a similar sewing of cubes-with-handles onto $\text{Bd } N^3$ to give a closed 3-manifold N^3_0 which is homeomorphic to M^3_0. We have

$$M^3_0 = N^3_0 \# *K^3_0 \# \cdots \# *K^3_n$$

and the argument for the closed orientable case applies.

If M^3 is nonorientable, we apply the previous argument to the orientable double covering of M^3.

Corollary 5. Let M^3 and N^3 be compact (i.e., closed) 3-manifolds. Let $f: M^3 \to N^3$ be an onto map such that $\{x \in N^3 : f^{-1}(x) \text{ is not cellular in } M^3\}$ is finite, and let $g: N^3 \to M^3$ be an onto map such that $\{x \in M^3 : g^{-1}(x) \text{ is not cellular in } N^3\}$ is finite. Then M^3 is homeomorphic to N^3.

Proof. By Corollary 2, we have $M^3 = N^3 \# *K^3_0 \# \cdots \# *K^3_n$ and $N^3 = M^3 \# *Q^3_0 \# \cdots \# *Q^3_m$. By a corollary to the Grushko-Neumann Theorem (p. 192 of [10]) we see that $*K^3_0, \ldots, *K^3_n, *Q^3_0, \ldots, *Q^3_m$ are all homotopy 3-spheres. This implies that all of the point inverses of f and g have property UV^∞. Then Corollary 5 follows from Corollary 2.3 of [11].

VI. On Haken's finiteness theorem. In [5], Wolfgang Haken stated a finiteness theorem for incompressible surfaces in a compact 3-manifold M^3. We are interested here only in the special case of the theorem where the surfaces are closed: this
case is stated as Theorem C. Some difficulties arise with Haken’s proof in the case where M^3 is not irreducible. Haken’s proof is correct and can be simplified considerably in the case where M^3 is irreducible. We give here an argument due to John Hempel to show that the finiteness theorem holds in the case where M^3 may not be irreducible. Haken intended to prove Kneser’s Theorem [7] as a special case of the finiteness theorem; our argument uses Kneser’s Theorem. The previous results of this paper depend on the finiteness theorem directly through Theorem 2 of [12].

In this section we will be working in the piecewise-linear category. A surface is a 2-manifold. If F^2 is a surface in a 3-manifold M^3, and if F^2 is not a 2-sphere, then F^2 is incompressible in M^3 if every simple closed curve in F^2 that bounds an (open) disk in $M^3 - F^2$ also bounds a disk in F^2. A 2-sphere is incompressible in M^3 if it does not bound a 3-cell in M^3. A 3-manifold M^3 is irreducible if every 2-sphere in M^3 bounds a 3-cell in M^3.

Two surfaces F^2_0 and F^2_1 in a 3-manifold M^3 are parallel in M^3 if there is an embedding $\alpha: F^2_0 \times [0, 1] \to M^3$ such that $\alpha_0: F^2_0 \to M^3$ is the inclusion map, and $\alpha_1: F^2_1 \to M^3$ takes F^2_0 homeomorphically onto F^2_1. If F^2_1, \ldots, F^2_n are disjoint surfaces in a 3-manifold M^3, and if L^3 is the closure of a complementary domain of $M^3 - \bigcup_{i=1}^n F^2_i$, then L^3 is a parallelity component if, for some $i=1, \ldots, n$, there is a homeomorphism $h: F^2_i \times [0, 1] \to L^3$ such that $h_0: F^2_i \to L^3$ is the inclusion map, and $h_1: F^2_i \to L^3$ takes F^2_0 homeomorphically onto F^2_1 for some $j=1, \ldots, n, j \neq i$.

If C^3 is a 3-manifold, possibly with boundary, we define \hat{C}^3 to be the 3-manifold, possibly with boundary, obtained from C^3 by capping off each 2-sphere boundary component of C^3 with a 3-cell.

If B^3 is a 3-cell, and if B^3_1, \ldots, B^3_k are disjoint polyhedral 3-cells in $\text{Int} B^3$, then we call the manifold-with-boundary $B^3 - (\bigcup_{i=1}^k \text{Int} B^3_i)$ a punctured 3-cell.

Lemma A. If F^2 is an incompressible surface in the product $M^2 \times [0, 1]$, where M^2 is a compact 2-manifold, then F^2 is parallel to $M^2 \times \{0\}$ and $M^2 \times \{1\}$.

This lemma is stated and proved by Haken on pp. 91–96 of [5].

Lemma B. If C^3 is a 3-manifold, possibly with boundary, and \hat{C}^3 is irreducible, then the finiteness theorem holds for C^3. In other words, there is an integer $n = n(C^3)$ such that if F^2_1, \ldots, F^2_{n+1} are $n + 1$ disjoint incompressible polyhedral surfaces in C^3, then two of these surfaces are parallel.

Proof. We have assumed the finiteness theorem for irreducible 3-manifolds, so there is an integer $n = n(C^3)$ such that if there are more than $n(C^3)$ disjoint incompressible surfaces in \hat{C}^3, then two of them are parallel. There are disjoint 3-cells B^3_1, \ldots, B^3_k such that $C^3 = \hat{C}^3 - (\bigcup_{i=1}^k \text{Int} B^3_i)$. Let $n = n(C^3) = n(\hat{C}^3) + 2k$. Let F^2_1, \ldots, F^2_{n+1} be $n + 1$ disjoint incompressible surfaces in C^3. Then $n - k + 1$ of these surfaces are incompressible in \hat{C}^3. There are $k + 1$ distinct pairs from F^2_1, \ldots, F^2_{n+1} which are parallel in \hat{C}^3. (We say that the pair (F^2_i, F^2_j) is distinct from the pair...
Theorem C. Let M^3 be a compact 3-manifold, possibly with boundary. Then there is an integer $n_0 = n(M^3)$ such that if $F_1, \ldots, F_{n_0 + 1}$ are $n_0 + 1$ disjoint polyhedral-incompressible surfaces in M^3, then two of these surfaces are parallel.

Proof. Let $\Sigma = \{S_2, \ldots, S_f\}$ be a disjoint collection of 2-spheres in M^3. Let N_1, \ldots, N_s be disjoint regular neighborhoods of S_2, \ldots, S_f respectively. Let C_1, \ldots, C_s be the components of $\text{Cl} (M^3 - \bigcup_{i=1}^s N_i)$. (The C_i's are determined up to homeomorphism by the S_i's and do not depend on the choice of the N_i's. Note that k may not equal l since some of the S_i's may not separate M^3.) We will call Σ a complete system of 2-spheres in M^3 if C_1, \ldots, C_s are each irreducible.

We will let $n(M^3, \Sigma) = \sum_{i=1}^s n(C_i)$ where $n(C_i)$ is defined in Lemma B.

Kneser's Theorem [7] shows that there is a complete system Σ_0 of 2-spheres in M^3. We will assume Σ_0 is a fixed complete system and we will let $n_0 = n(M^3, \Sigma_0)$.

Let $F_2, \ldots, F_{n_0 + 1}$ be disjoint incompressible surfaces in M^3. Let $F^2 = \bigcup_{i=1}^{n_0 + 1} F_i$. Suppose $\Sigma = \{S_2, \ldots, S_f\}$ is a complete system of 2-spheres in M^3, each of which is in general position with respect to F^2, and suppose that $n(M^3, \Sigma) = n_0$. Let $m(M^3, \Sigma, F^2)$ be the number of components of $(\bigcup_{i=1}^s S_i) \cap F^2$. (Each of these components is a simple closed curve.) We can suppose $m(M^3, \Sigma, F^2)$ is minimal over all such complete systems of 2-spheres in M^3. Theorem C will be proved if $m(M^3, \Sigma, F^2)$ is zero. For then there will be more than $n(C_i)$ of the surfaces $F_2, \ldots, F_{n_0 + 1}$ in one of the components C_i, and two of these surfaces must be parallel in C_i by Lemma B. (Let N_1, \ldots, N_s and C_1, \ldots, C_s be defined as before.)

So we suppose that $m(M^3, \Sigma, F^2) > 0$. Any simple closed curve of $\bigcup_{i=1}^s S_i$ must bound a disk in F^2, since F^2 is incompressible. Therefore, we can choose an "innermost" (on F^2) simple closed curve J of $\bigcup_{i=1}^s S_i$ in F^2; suppose $J \subset S_{i_1} \cap F^2$ for some $i_1 = 1, \ldots, l$ and $s_1 = 1, \ldots, n_0 + 1$. Let D^2 be the disk that J bounds in F^2. Then D^2 is contained in some C_q (where $q = 1, \ldots, k$) except for a regular neighborhood of ∂D^2.

Let E_1^2 and E_2^2 be the two disks bounded by J in S_{i_1}. We can push each of the 2-spheres $E_1^2 \cup D^2$ and $E_2^2 \cup D^2$ to one side so that they each miss D^2, and so that they are each contained in C_q. Then one of these 2-spheres must be in the boundary of a punctured cube P^3 in C_q since C_q is irreducible. Let S_{i_1}' be the 2-sphere that is not in the boundary of P^3, and let $\Sigma' = \{S_{i_1}, S_{i_1}', S_{i_2}, S_{i_2}', \ldots, S_{i_k}\}$. We will show that Σ' is a complete system of 2-spheres in M^3, that $n(M^3, \Sigma') = n_0$, and that $m(M^3, \Sigma', F^2) < m(M^3, \Sigma, F^2)$.

Let $C_1 (i = 1, \ldots, k)$ be the component of $\partial (M^3 - \bigcup_{i=1}^s N_i)$ on the "other side" of S_{i_1}. (If S_{i_1} does not separate M^3, then C_1 may equal C_1.) If we choose a small regular neighborhood N_{i_1}' of S_{i_1} and let $N_{i_1}' \cap D^2 = \emptyset$ and let $N_{i_1}' = N_{i_1}$ for
i ≠ r, we can define C_q^3 and C_r^3 to be components of $\text{Cl}(M^3 - \bigcup_{i=1}^l N_i^3)$. A subdisk D^2_δ of D^2 is a spanning disk of C^3_δ and if we remove the interior of a regular neighborhood of D^2_δ, this separates C^3_δ into two components, one homeomorphic to C^3_δ, and the other homeomorphic to the punctured cube P^3. Thus C^3_δ is homeomorphic to C^3_δ. Furthermore, C^3_δ is homeomorphic to the manifold obtained by sewing P^3 to C^3_r along a disk on the boundary of each. Thus C^3_δ is homeomorphic to C^3_r. We also have $n(C^3_\delta) + n(C^3_r) = n(C^3_\delta) + n(C^3_r)$ since the 2-sphere boundary components of $C^3_\delta \cap P^3$ which were removed from C^3_δ to obtain C^3_δ were added to C^3_r to obtain C^3_r. Thus $n(M^3, \Sigma^3) = n_0$.

Since $S^2 \cap D^2 = \emptyset$, $m(M^3, \Sigma^3, F^3) < m(M^3, \Sigma, F^3)$, and this contradicts our assumption that $m(M^3, \Sigma, F^3)$ was minimal.

BIBLIOGRAPHY

Department of Mathematics, University of Utah, Salt Lake City, Utah 84112

Current address: Department of Mathematics, Western Michigan University, Kalamazoo, Michigan 49001

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use