Knots whose branched cyclic coverings have periodic homology
HTML articles powered by AMS MathViewer
- by C. McA. Gordon
- Trans. Amer. Math. Soc. 168 (1972), 357-370
- DOI: https://doi.org/10.1090/S0002-9947-1972-0295327-8
- PDF | Request permission
Abstract:
Let ${M_k}$ be the $k$-fold branched cyclic covering of a (tame) knot of ${S^1}$ in ${S^3}$. Our main result is that the following statements are equivalent: (1) ${H_1}({M_k})$ is periodic with period $n$, i.e. ${H_1}({M_k}) \cong {H_1}({M_{k + n}})$ for all $k$, (2) ${H_1}({M_k}) \cong {H_1}({M_{(k,n)}})$ for all $k$, (3) the first Alexander invariant of the knot, ${\lambda _1}(t) = {\Delta _1}(t)/{\Delta _2}(t)$, divides ${t^n} - 1$.References
- R. H. Crowell, The group $Gโ/G''$ of a knot group $G$, Duke Math. J. 30 (1963), 349โ354. MR 154277, DOI 10.1215/S0012-7094-63-03036-9 โ, ${H_2}$ of subgroups of knot groups, Illinois J. Math. 14 (1970), 665-673.
- Richard H. Crowell and Ralph H. Fox, Introduction to knot theory, Ginn and Company, Boston, Mass., 1963. Based upon lectures given at Haverford College under the Philips Lecture Program. MR 0146828
- R. H. Fox, A quick trip through knot theory, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp.ย 120โ167. MR 0140099
- Ralph H. Fox, The homology characters of the cyclic coverings of the knots of genus one, Ann. of Math. (2) 71 (1960), 187โ196. MR 119210, DOI 10.2307/1969886
- Ralph H. Fox, Free differential calculus. II. The isomorphism problem of groups, Ann. of Math. (2) 59 (1954), 196โ210. MR 62125, DOI 10.2307/1969686
- Ralph H. Fox, Free differential calculus. III. Subgroups, Ann. of Math. (2) 64 (1956), 407โ419. MR 95876, DOI 10.2307/1969592
- R. H. Fox, On knots whose points are fixed under a periodic transformation of the $3$-sphere, Osaka Math. J. 10 (1958), 31โ35. MR 131872
- Ralph H. Fox, Two theorems about periodic transformations of the $3$-sphere, Michigan Math. J. 14 (1967), 331โ334. MR 224089
- Lebrecht Goeritz, Die Bettiโschen Zahlen Der Zyklischen Uberlagerungsraume Der Knotenaussenraume, Amer. J. Math. 56 (1934), no.ย 1-4, 194โ198 (French). MR 1507011, DOI 10.2307/2370923
- C. McA. Gordon, A short proof of a theorem of Plans on the homology of the branched cyclic coverings of a knot, Bull. Amer. Math. Soc. 77 (1971), 85โ87. MR 267567, DOI 10.1090/S0002-9904-1971-12611-3 โ, A note on the realisation of polynomial knot invariants (in preparation).
- G. H. Hardy and E. M. Wright, An introduction to the theory of numbers, Oxford, at the Clarendon Press, 1954. 3rd ed. MR 0067125
- Serge Lang, Algebra, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965. MR 0197234
- J. Levine, A characterization of knot polynomials, Topology 4 (1965), 135โ141. MR 180964, DOI 10.1016/0040-9383(65)90061-3
- J. Levine, Polynomial invariants of knots of codimension two, Ann. of Math. (2) 84 (1966), 537โ554. MR 200922, DOI 10.2307/1970459 C. C. MacDuffee, The theory of matrices, Chelsea, New York, 1946.
- L. P. Neuwirth, Knot groups, Annals of Mathematics Studies, No. 56, Princeton University Press, Princeton, N.J., 1965. MR 0176462
- Lee Neuwirth, The algebraic determination of the genus of knots, Amer. J. Math. 82 (1960), 791โ798. MR 120648, DOI 10.2307/2372940
- Lee Neuwirth, On Stallings fibrations, Proc. Amer. Math. Soc. 14 (1963), 380โ381. MR 149470, DOI 10.1090/S0002-9939-1963-0149470-4
- Antonio Plans, Contribution to the study of the homology groups of the cyclic ramified coverings corresponding to a knot, Rev. Acad. Ci. Madrid 47 (1953), 161โ193 (5 plates) (Spanish). MR 56923
- Harry Pollard, The Theory of Algebraic Numbers, Carus Monograph Series, no. 9, Mathematical Association of America, Buffalo, N.Y., 1950. MR 0037319
- Elvira Strasser Rapaport, On the commutator subgroup of a knot group, Ann. of Math. (2) 71 (1960), 157โ162. MR 116047, DOI 10.2307/1969883
- H. Seifert, รber das Geschlecht von Knoten, Math. Ann. 110 (1935), no.ย 1, 571โ592 (German). MR 1512955, DOI 10.1007/BF01448044
- Y. Shinohara and D. W. Sumners, Homology invariants of cyclic coverings with application to links, Trans. Amer. Math. Soc. 163 (1972), 101โ121. MR 284999, DOI 10.1090/S0002-9947-1972-0284999-X
- E. G. Skljarenko, Almost acyclic mappings, Mat. Sb. (N.S.) 75 (117) (1968), 296โ302 (Russian). MR 0229232 J. R. Stallings, On fibering certain $3$-manifolds, Topology of $3$-Manifolds and Related Topics (Proc. The Univ. of Georgia Inst., 1961), Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 95-100. MR 28 #1600.
- D. W. Sumners, On the homology of finite cyclic coverings of higher-dimensional links, Proc. Amer. Math. Soc. 46 (1974), 143โ149. MR 350747, DOI 10.1090/S0002-9939-1974-0350747-5
- H. F. Trotter, Homology of group systems with applications to knot theory, Ann. of Math. (2) 76 (1962), 464โ498. MR 143201, DOI 10.2307/1970369 J. H. C. Whitehead, On doubled knots, J. London Math. Soc. 12 (1937), 63-71.
- E. C. Zeeman, Twisting spun knots, Trans. Amer. Math. Soc. 115 (1965), 471โ495. MR 195085, DOI 10.1090/S0002-9947-1965-0195085-8
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 168 (1972), 357-370
- MSC: Primary 55A25
- DOI: https://doi.org/10.1090/S0002-9947-1972-0295327-8
- MathSciNet review: 0295327