## Knots whose branched cyclic coverings have periodic homology

HTML articles powered by AMS MathViewer

- by C. McA. Gordon PDF
- Trans. Amer. Math. Soc.
**168**(1972), 357-370 Request permission

## Abstract:

Let ${M_k}$ be the $k$-fold branched cyclic covering of a (tame) knot of ${S^1}$ in ${S^3}$. Our main result is that the following statements are equivalent: (1) ${H_1}({M_k})$ is periodic with period $n$, i.e. ${H_1}({M_k}) \cong {H_1}({M_{k + n}})$ for all $k$, (2) ${H_1}({M_k}) \cong {H_1}({M_{(k,n)}})$ for all $k$, (3) the first Alexander invariant of the knot, ${\lambda _1}(t) = {\Delta _1}(t)/{\Delta _2}(t)$, divides ${t^n} - 1$.## References

- R. H. Crowell,
*The group $Gโ/G''$ of a knot group $G$*, Duke Math. J.**30**(1963), 349โ354. MR**154277**, DOI 10.1215/S0012-7094-63-03036-9
โ, - Richard H. Crowell and Ralph H. Fox,
*Introduction to knot theory*, Ginn and Company, Boston, Mass., 1963. Based upon lectures given at Haverford College under the Philips Lecture Program. MR**0146828** - R. H. Fox,
*A quick trip through knot theory*, Topology of 3-manifolds and related topics (Proc. The Univ. of Georgia Institute, 1961) Prentice-Hall, Englewood Cliffs, N.J., 1962, pp.ย 120โ167. MR**0140099** - Ralph H. Fox,
*The homology characters of the cyclic coverings of the knots of genus one*, Ann. of Math. (2)**71**(1960), 187โ196. MR**119210**, DOI 10.2307/1969886 - Ralph H. Fox,
*Free differential calculus. II. The isomorphism problem of groups*, Ann. of Math. (2)**59**(1954), 196โ210. MR**62125**, DOI 10.2307/1969686 - Ralph H. Fox,
*Free differential calculus. III. Subgroups*, Ann. of Math. (2)**64**(1956), 407โ419. MR**95876**, DOI 10.2307/1969592 - R. H. Fox,
*On knots whose points are fixed under a periodic transformation of the $3$-sphere*, Osaka Math. J.**10**(1958), 31โ35. MR**131872** - Ralph H. Fox,
*Two theorems about periodic transformations of the $3$-sphere*, Michigan Math. J.**14**(1967), 331โ334. MR**224089** - Lebrecht Goeritz,
*Die Bettiโschen Zahlen Der Zyklischen Uberlagerungsraume Der Knotenaussenraume*, Amer. J. Math.**56**(1934), no.ย 1-4, 194โ198 (French). MR**1507011**, DOI 10.2307/2370923 - C. McA. Gordon,
*A short proof of a theorem of Plans on the homology of the branched cyclic coverings of a knot*, Bull. Amer. Math. Soc.**77**(1971), 85โ87. MR**267567**, DOI 10.1090/S0002-9904-1971-12611-3
โ, - G. H. Hardy and E. M. Wright,
*An introduction to the theory of numbers*, Oxford, at the Clarendon Press, 1954. 3rd ed. MR**0067125** - Serge Lang,
*Algebra*, Addison-Wesley Publishing Co., Inc., Reading, Mass., 1965. MR**0197234** - J. Levine,
*A characterization of knot polynomials*, Topology**4**(1965), 135โ141. MR**180964**, DOI 10.1016/0040-9383(65)90061-3 - J. Levine,
*Polynomial invariants of knots of codimension two*, Ann. of Math. (2)**84**(1966), 537โ554. MR**200922**, DOI 10.2307/1970459
C. C. MacDuffee, - L. P. Neuwirth,
*Knot groups*, Annals of Mathematics Studies, No. 56, Princeton University Press, Princeton, N.J., 1965. MR**0176462** - Lee Neuwirth,
*The algebraic determination of the genus of knots*, Amer. J. Math.**82**(1960), 791โ798. MR**120648**, DOI 10.2307/2372940 - Lee Neuwirth,
*On Stallings fibrations*, Proc. Amer. Math. Soc.**14**(1963), 380โ381. MR**149470**, DOI 10.1090/S0002-9939-1963-0149470-4 - Antonio Plans,
*Contribution to the study of the homology groups of the cyclic ramified coverings corresponding to a knot*, Rev. Acad. Ci. Madrid**47**(1953), 161โ193 (5 plates) (Spanish). MR**56923** - Harry Pollard,
*The Theory of Algebraic Numbers*, Carus Monograph Series, no. 9, Mathematical Association of America, Buffalo, N.Y., 1950. MR**0037319** - Elvira Strasser Rapaport,
*On the commutator subgroup of a knot group*, Ann. of Math. (2)**71**(1960), 157โ162. MR**116047**, DOI 10.2307/1969883 - H. Seifert,
*รber das Geschlecht von Knoten*, Math. Ann.**110**(1935), no.ย 1, 571โ592 (German). MR**1512955**, DOI 10.1007/BF01448044 - Y. Shinohara and D. W. Sumners,
*Homology invariants of cyclic coverings with application to links*, Trans. Amer. Math. Soc.**163**(1972), 101โ121. MR**284999**, DOI 10.1090/S0002-9947-1972-0284999-X - E. G. Skljarenko,
*Almost acyclic mappings*, Mat. Sb. (N.S.)**75 (117)**(1968), 296โ302 (Russian). MR**0229232**
J. R. Stallings, - D. W. Sumners,
*On the homology of finite cyclic coverings of higher-dimensional links*, Proc. Amer. Math. Soc.**46**(1974), 143โ149. MR**350747**, DOI 10.1090/S0002-9939-1974-0350747-5 - H. F. Trotter,
*Homology of group systems with applications to knot theory*, Ann. of Math. (2)**76**(1962), 464โ498. MR**143201**, DOI 10.2307/1970369
J. H. C. Whitehead, - E. C. Zeeman,
*Twisting spun knots*, Trans. Amer. Math. Soc.**115**(1965), 471โ495. MR**195085**, DOI 10.1090/S0002-9947-1965-0195085-8

*${H_2}$ of subgroups of knot groups*, Illinois J. Math.

**14**(1970), 665-673.

*A note on the realisation of polynomial knot invariants*(in preparation).

*The theory of matrices*, Chelsea, New York, 1946.

*On fibering certain $3$-manifolds*, Topology of $3$-Manifolds and Related Topics (Proc. The Univ. of Georgia Inst., 1961), Prentice-Hall, Englewood Cliffs, N. J., 1962, pp. 95-100. MR

**28**#1600.

*On doubled knots*, J. London Math. Soc.

**12**(1937), 63-71.

## Additional Information

- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**168**(1972), 357-370 - MSC: Primary 55A25
- DOI: https://doi.org/10.1090/S0002-9947-1972-0295327-8
- MathSciNet review: 0295327