The asymptotic behavior of a Fourier transform and the localization property for eigenfunction expansions for some partial differential operators
HTML articles powered by AMS MathViewer
- by Burton Randol
- Trans. Amer. Math. Soc. 168 (1972), 265-271
- DOI: https://doi.org/10.1090/S0002-9947-1972-0296600-X
- PDF | Request permission
Abstract:
The asymptotic behavior of a certain Fourier transform is investigated, and the result is applied to obtain a localization theorem for elliptic operators on the torus.References
- Salomon Bochner, Summation of multiple Fourier series by spherical means, Trans. Amer. Math. Soc. 40 (1936), no. 2, 175–207. MR 1501870, DOI 10.1090/S0002-9947-1936-1501870-1
- A. Erdélyi, Asymptotic expansions, Dover Publications, Inc., New York, 1956. MR 0078494 G. H. Hardy and Marcel Riesz, The general theory of Dirichlet’s series, Cambridge Univ. Press, Cambridge, 1952.
- C. S. Herz, Fourier transforms related to convex sets, Ann. of Math. (2) 75 (1962), 81–92. MR 142978, DOI 10.2307/1970421
- Edmund Hlawka, Über Integrale auf konvexen Körpern. I, Monatsh. Math. 54 (1950), 1–36 (German). MR 37003, DOI 10.1007/BF01304101
- Walter Littman, Fourier transforms of surface-carried measures and differentiability of surface averages, Bull. Amer. Math. Soc. 69 (1963), 766–770. MR 155146, DOI 10.1090/S0002-9904-1963-11025-3
- Elias M. Stein, Localization and summability of multiple Fourier series, Acta Math. 100 (1958), 93–147. MR 105592, DOI 10.1007/BF02559603
- Burton Randol, On the Fourier transform of the indicator function of a planar set, Trans. Amer. Math. Soc. 139 (1969), 271–278. MR 251449, DOI 10.1090/S0002-9947-1969-0251449-9
- Burton Randol, On the Fourier transform of the indicator function of a planar set, Trans. Amer. Math. Soc. 139 (1969), 271–278. MR 251449, DOI 10.1090/S0002-9947-1969-0251449-9
- Ingvar Svensson, Estimates for the Fourier transform of the characteristic function of a convex set, Ark. Mat. 9 (1971), 11–22. MR 328471, DOI 10.1007/BF02383634
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 168 (1972), 265-271
- MSC: Primary 42A68; Secondary 35P10, 42A62, 47F05
- DOI: https://doi.org/10.1090/S0002-9947-1972-0296600-X
- MathSciNet review: 0296600