SEMIGROUPS SATISFYING VARIABLE IDENTITIES. II

BY

MOHAN S. PUTCHA AND JULIAN WEISSGLASS

Abstract. The concept of a semigroup satisfying an identity $xy=f(x,y)$ is generalized by considering identities in n-variables and letting the identity depend on the variables. The property of satisfying a "variable identity" is studied. Semigroups satisfying certain types of identities are characterized in terms of unions and semi-lattices of groups.

Introduction. Semigroups satisfying an identity of the form $xy=f(x,y)$ have been studied by Tully [5] and Tamura [4]. In [2], we generalized Tamura's result. We considered semigroups S satisfying: for every $a, b \in S$ there exists a positive integer m such that $ab = b^{\lambda_1}a^{\mu_1} \cdots b^{\lambda_m}a^{\mu_m}$ where λ_i, μ_i are integers greater than one, $i=1, \ldots, m$, and $\sum_{i=1}^{m} \mu_i \geq 2$. We proved that a semigroup S satisfies this condition if and only if S is an inflation of a semi-lattice of periodic groups. The purpose of this article is to consider semigroups satisfying the analogous condition for n variables.

1. Preliminaries. Throughout S will denote a semigroup and $E=E(S)$ the set of idempotents of S and n will be an integer, $n \geq 2$. Let F_n denote the free (non-commutative) semigroup generated by the distinct letters x_1, \ldots, x_n. Denote by C_n the subsemigroup of F_n consisting of all elements $x \in F_n$ each of which is the product of all of the x_1, \ldots, x_n, allowing repeated use. Let R_n denote the semigroup ring of C_n over the integers \mathbb{Z}. Thus R_n is the set of functions of finite support from C_n to \mathbb{Z}. It is well known that R_n can be considered as the set of finite formal sums of elements in C_n and coefficients in \mathbb{Z}.

Definition. We define a subset \mathcal{V}_n of R_n by $\mathcal{V}_n = \{ f \mid f \in R_n, f = f_1 - f_2, \text{there exists } c_1, c_2 \in C_n, c_1 \neq c_2 \text{ such that } f_i(c) = 0 \text{ unless } c = c_i, f_i(c_i) = 1 \}$.

Thus \mathcal{V}_n is the set of all $f \in R_n$ which are the differences of two different monomials. That is, $f \in \mathcal{V}_n$ if and only if $f = x_{k_1} \cdots x_{k_r} - x_{i_1} \cdots x_{i_s} \neq 0$, where each $x_i (i=1, \ldots, n)$ appears at least once in $x_{k_1} \cdots x_{k_r}$ and at least once in $x_{i_1} \cdots x_{i_s}$.

If $a_1, \ldots, a_n \in S$ there exists a homomorphism $\varphi: C_n \to S$ such that $\varphi(x_i) = a_i$. This homomorphism extends to a homomorphism φ' from R_n into the semigroup ring of S over \mathbb{Z}. If $f = f_1 - f_2 \in \mathcal{V}_n$ and $a_1, \ldots, a_n \in S$ we say that $f_1(a_1, \ldots, a_n) = f_2(a_1, \ldots, a_n)$ if $f \in \ker \varphi'$. Thus $f_1(a_1, \ldots, a_n) = f_2(a_1, \ldots, a_n)$ if and only if considering f_1 and f_2 as monomials in x_1, \ldots, x_n when a_i is substituted for x_i and

Received by the editors April 19, 1971.
AMS 1969 subject classifications. Primary 2093.
Key words and phrases. Semigroups, variable identity, semi-lattice, inflation.

Copyright © 1972, American Mathematical Society

113
multiplication performed in \(S \), we have \(f_1(a_1, \ldots, a_n) = f_2(a_1, \ldots, a_n) \). We will use without further comment this characterization of \(f_1(a_1, \ldots, a_n) = f_2(a_1, \ldots, a_n) \).

If \(\mathcal{X} \) is a subset of \(\mathcal{Y}_n \), we say that \(S \) is an \(\mathcal{X} \)-semigroup if for every \(a_1, \ldots, a_n \in S \) there exists \(f = f_1 - f_2 \in \mathcal{X} \) (depending on \(a_1, \ldots, a_n \)) such that

\[
f_1(a_1, \ldots, a_n) = f_2(a_1, \ldots, a_n).
\]

We prove a preliminary result for arbitrary subsets \(\mathcal{X} \subseteq \mathcal{Y}_n \).

Theorem 1.1. Suppose \(T \) is a semilattice \(\Omega \) of semigroups \(T_\alpha, \alpha \in \Omega \), such that each \(T_\alpha \) has an identity element. Then \(T \) is an \(\mathcal{X} \)-semigroup if and only if each \(T_\alpha \) is an \(\mathcal{X}_\alpha \)-semigroup.

Proof. If \(T \) is an \(\mathcal{X} \)-semigroup then each \(T_\alpha \) is an \(\mathcal{X}_\alpha \)-semigroup since subsemigroups of \(\mathcal{X} \)-semigroups are \(\mathcal{X}_\alpha \)-semigroups. To prove the converse let \(a_1, \ldots, a_n \in T \). Suppose \(a_\alpha \in T_\alpha \) and let \(\alpha = \alpha_1 \cdots \alpha_n \) (the product in the semilattice \(\Omega \)). Then \(a = a_1 \cdots a_n \in T_\alpha \). Let \(e \) be the identity of \(T_\alpha \). Since \(\alpha \alpha = \alpha \) we have that \(a \in T_\alpha \) and \(a_\alpha e \) are in \(T_\alpha \), for \(i = 1, \ldots, n \). Furthermore \(e a_i = (e a_i) e = e (a_i e) = a_i e \). Now applying the hypothesis to \(T_\alpha \), there exists \(f = f_1 - f_2 \in \mathcal{X} \) such that \(f_1(a_\alpha e, \ldots, a_n e) = f_2(a_\alpha e, \ldots, a_n e) \). Since each \(x_i \) appears at least once in \(f_1 \) and \(f_2 \) and since \(\alpha \alpha = \alpha \), it follows that \(f_1(a_\alpha e, \ldots, a_n e) \) and \(f_2(a_\alpha e, \ldots, a_n e) \) are in \(T_\alpha \). Hence \(f_1(a_\alpha e, \ldots, a_n e) = f_2(a_\alpha e, \ldots, a_n e) \). Therefore \(T \) is an \(\mathcal{X} \)-semigroup.

Definition. Let \(S \) be a semigroup, \(T \) a subsemigroup of \(S \). Then \(S \) is an \(n \)th inflation of \(T \) if there exists a homomorphism \(\theta: S \to T \) such that \(\theta \) is the identity map on \(T \) and for each \(a_1, \ldots, a_n \in S \), \((a_1 \theta) \cdots (a_n \theta) = a_1 \cdots a_n \).

Remark. The 2nd inflation corresponds to the usual concept of inflation (cf. [1, p. 98]). If \(S \) is an \(n \)th inflation of \(T \) then \((a_1 \theta) \cdots (a_m \theta) = a_1 \cdots a_m \) for all \(m \geq n \).

Corollary 1.2. Let \(\mathcal{X} \subseteq \mathcal{Y}_n \). Suppose \(S \) is an \(n \)th inflation of \(T \), that \(T \) is a semilattice of semigroups \(T_\alpha \), and that each \(T_\alpha \) is an \(\mathcal{X}_\alpha \)-semigroup with identity. Then \(S \) is an \(\mathcal{X}_n \)-semigroup.

Proof. Let \(a_1, \ldots, a_n \in S \). Then \(a_1, \ldots, a_n \in T \) so by Theorem 1.1 there exists \(f = f_1 - f_2 \in \mathcal{X} \) such that \(f_1(a_1 \theta, \ldots, a_n \theta) = f_2(a_1 \theta, \ldots, a_n \theta) \). By the above remark, for \(j = 1, 2, f_j(a_1, \ldots, a_n) = f_j(a_1 \theta, \ldots, a_n \theta) \) since each \(x_i \) appears at least once in \(f_j \). Thus \(f_1(a_1, \ldots, a_n) = f_1(a_1 \theta, \ldots, a_n \theta) = f_2(a_1 \theta, \ldots, a_n \theta) = f_2(a_1, \ldots, a_n) \). Hence \(S \) is an \(\mathcal{X}_n \)-semigroup.

Remark. The proof of Corollary 1.2 can be modified to prove that if \(S \) is an ideal extension of \(T \) by an \(\mathcal{X}_n \)-semigroup, then \(S \) is an \(\mathcal{X}_n \)-semigroup.

Definition. Let \(n, i, \alpha \) be positive integers \(n \geq 2 \), \(1 \leq i \leq n \). Certain subsets of \(\mathcal{Y}_n \) are defined by:

1. \(\mathcal{L}_n = \{ f \mid f = f_1 - f_2 \in \mathcal{Y}_n; \ f_1 = x_1 \cdots x_n; \ x_j \) appears at least twice in \(f_2, j = 1, \ldots, n \} \).
2. \(\mathcal{M}_{n, \alpha} = \{ f \mid f = f_1 - f_2 \in \mathcal{Y}_n, f_1 = x_1 \cdots x_n, x_i \) appears at least \(\alpha \) times in \(f_2 \} \).
SEMIGROUPS SATISFYING VARIABLE IDENTITIES. II

(3) If \(\mathcal{X} \subseteq \mathcal{Y}_n \), then \(\overline{\mathcal{X}} = \{ f \mid f = f_1 - f_2 \in \mathcal{X}, f_2 \) starts with \(x_j, f \neq 1 \) and ends with \(x_k, k \neq n \}. \)

(4) \(S \) is an \(M_{\alpha}^{\infty} \)-semigroup if \(S \) is an \(M_{\alpha}^{\infty} \)-semigroup for all \(\alpha \geq 2 \).

Remark. Let \(\mathcal{X}, \mathcal{Y} \subseteq \mathcal{Y}_n \). Then \(\mathcal{X} \subseteq \mathcal{Y} \) implies that: (i) every \(\mathcal{X} \)-semigroup is a \(\mathcal{Y} \)-semigroup and (ii) \(\overline{\mathcal{X}} \subseteq \overline{\mathcal{Y}} \). Also subsemigroups and homomorphic images of \(\mathcal{X} \)-semigroups are \(\mathcal{X} \)-semigroups.

We will now prove several lemmas which are needed for the main theorems.

Let \(a_1, \ldots, a_n \in S \) and suppose \(x = a_1^{\mu_1} \cdots a_n^{\mu_n} \). We say that the length of \(x \) in the \(a_i \)'s is \(\sum_{i=1}^{n} \mu_i \).

Lemma 1.3. (i) Every \(M_n \)-semigroup is an \(M_{n,0} \)-semigroup.

(ii) Every \(M_{n,2} \)-semigroup is an \(M_{n,0} \)-semigroup.

Proof. (i) The proof follows by repeated application of the equation

\[a_1 \cdots a_n = f_2(a_1, \ldots, a_n). \]

(ii) Since \(M_{n,\alpha} \subseteq M_n \) it suffices to show that for \(\alpha \geq 2 \), every \(M_{n,\alpha} \)-semigroup is an \(M_{n,\alpha + 1} \)-semigroup. Let \(a_1, \ldots, a_n \in S \). Then by (2) \(a_1 \cdots a_n = f_2(a_1, \ldots, a_n) \), where each \(a_i \) appears at least once on the right-hand side and \(a_i \) appears at least \(\alpha \) times. Since we can apply the hypothesis repeatedly, we may assume, without loss of generality, that the length of \(f_2 \) in the \(a_i \)'s is greater than \(2n^2 \). There are two possibilities:

(i) \(f_2(a_1, \ldots, a_n) = u a_1 h_1 \cdots h_n \) with \(u, h_j \in \langle a_1, \ldots, a_n \rangle, a_i \) appearing in at least one \(h_j \) and the length of \(h_j \) in the \(a_k \)'s greater than or equal to \(n \).

(ii) \(f_2(a_1, \ldots, a_n) = h_1 \cdots h_n a u, h_i, u \) as in (i).

We assume (i), the proof for (ii) being similar. Applying the \(M_{n,\alpha} \)-hypothesis to \((u a_1 h_1) h_2 \cdots h_n \) we have

\[(u a_1 h_1) h_2 \cdots h_n = f_2(u a_1 h_1, h_2, \ldots, h_n) = h_{k_1} \cdots h_{k_n} u a_1 h_1 h_{k_1+1} \cdots h_{k_n} = g_1 \cdots g_{n} \]

where each \(g_i \) is a product of the \(a_i \)'s and \(a_i \) appears in at least one \(g_j \). Again applying the \(M_{n,\alpha} \)-hypothesis we have \(g_1 \cdots g_{i-1} a g_{i+1} \cdots g_{n} = f_3(g_1, \ldots, a, \ldots, g_n) \).

Now since \(a_i \) appears in some \(g_j \), \(a_i \) appears at least \(\alpha + 1 \) times on the right-hand side. Hence \(a_1 \cdots a_n = f_2(a_1, \ldots, a_n) = u a_1 h_1 \cdots h_n = f_3(g_1, \ldots, a, \ldots, g_n) \) and the proof is complete.

Lemma 1.4. Suppose that \(S \) is a semigroup with zero and that \(S \) is an \(M_{n,0}^{\infty} \)-semigroup with no nonzero idempotents. Then \(S^n = \{0\} \).

Proof. Let \(s \in S \). Letting \(a_1 = a_2 = \cdots = a_n \in S \), we have from (2) that \(s^n = s^k \), with \(k > n \). Hence \(s^n \in E(S) \) for some \(m, n \leq m \leq k \). Thus \(s^n = 0 \) and hence \(s^m = s^k = 0 \).

Let \(l \) be the least positive integer for which \(S^{l-1} s^l S^{n-l} = \{0\} \). We prove that the assumption \(l > 1 \) leads to a contradiction. Let \(t_1, \ldots, t_n \in S \). Let \(\alpha = n + 1 \) and define

\[a_j = s^{l-1} t_j \quad \text{if} \quad 1 \leq j < i, \]

\[a_j = s^{l-1} t_i s^{l-1} \quad \text{if} \quad j = i, \]

\[a_j = t_i s^{l-1} \quad \text{if} \quad i < j \leq n. \]
Since S is an \mathcal{M}_n^α-semigroup we have $a_1 \cdots a_n = f_2(a_1, \ldots, a_n)$ with a_i appearing at least $\alpha = n+1$ times on the right. It follows that s^l appears at least n times on the right. Isolating the ith s^l we see that $f_2(a_1, \ldots, a_n) \in S^{n-i}S^n = \{0\}$. Thus $s^l = t_1 \cdots t_{l-1} t_n s^{l-1} \cdots t_n s^{l-1} = f_2(a_1, \ldots, a_n) = 0$. But the t_i's are arbitrary in S. Hence $(s^{n-i}S^n)^{n+1} = 0$. Now apply the \mathcal{M}_n^α condition with $\alpha = 2n+2$ to the elements $a_j = t_j$, $j \neq i$ and $a_i = s^{l-1}$ where the t_j are arbitrary elements of S. We have

$$t_1 \cdots t_{l-1} s^{l-1} t_{l+1} \cdots t_n = f_2(t_1, \ldots, t_{l-1}, s^{l-1}, t_{l+1}, \ldots, t_n) \in S^{l}(s^{l-1}S^n)^{n+1} = \{0\}.$$

Since the t_j are arbitrary, we conclude that $S^{l-1}S^{n-i} = \{0\}$, a contradiction. Hence $l = 1$ and $S^{l-1}S^{n-i} = \{0\}$, for every $s \in S$. Thus $S^n = \{0\}$.

Corollary 1.5. Let S be a semigroup with zero and no nonzero idempotents. If S is either an \mathcal{L}_n-semigroup or an $\mathcal{M}_n^{1,2}$-semigroup then $S^n = \{0\}$.

Definition. Let S be a semigroup. $I = \mathcal{I}(S) = \{x \mid x \in S, x^l = x \text{ for some positive integer } l \geq 2\}$. $E = \mathcal{E}(S) = \{x \mid x \in S, x^2 = x\}$.

Lemma 1.6. If S is an \mathcal{L}_n-semigroup or an $\mathcal{M}_n^{1,2}$-semigroup then $SE \cup ES \subseteq I$.

Proof. (i) Let S be an \mathcal{L}_n-semigroup. We will show that $SE \subseteq I$; the proof that $ES \subseteq I$ is similar. Let $a \in S$, $e \in E$. Then by (1), there exists f_k such that $ae = ae \cdots e = f_2(ae, e, \ldots, e) = e^k(ae)e^l = e^k(ae)^l$ where $l \geq 2$ and $k = 0$ or $k = 1$. If $k = 1$, $ae = e(ae)^l$ so that $iae = ae$. Hence $ae = e(ae)^l = (e(ae))e^r = (ae)^l$. Hence, for either $k = 0$ or $k = 1$, we obtain $ae = (ae)^l$, with $l \geq 2$. Consequently $ae \in I$.

(ii) Let S be an $\mathcal{M}_n^{1,2}$-semigroup. Let $a \in S$, $e \in E$. From (2) and (3) it follows that $ae = ae \cdots e = es$ for some $s \in S$. Hence $ae = eae$. Now letting $a_i = e$ for $j \neq i$ and $a_i = ae$ we have, again applying (2) and (3), that

$$e \cdots e(ae)e \cdots e = f_2(e, \ldots, ae, \ldots, e) = e^k(ae)^l$$

where $k = 0$ or l and $l \geq 2$. Hence $ae = eae = e^k(ae)^l = (e^r(ae)(ae)^l = (ae)^l$ and $ae \in I$, and so $SE \subseteq I$. Similarly $ES \subseteq I$.

Lemma 1.7. Let S be an \mathcal{L}_n-semigroup or an $\mathcal{M}_n^{1,2}$-semigroup. Then $E \subseteq I$ and I is an ideal. In particular, the Rees factor semigroup S/I has no nonzero idempotents.

Proof. Either hypothesis implies that S is periodic and hence $E \neq \emptyset$. Clearly $E \subseteq I$. Let $a \in I$, $x \in S$. Then there exists $l \geq 2$ such that $a = a^l$. Hence $a^{-1} \in E$. Consequently $ax = a^l x = a^l x = a^{-1}(ax) \in I$, by Lemma 1.6.

2. Main theorems.

Theorem 2.1. Let S be either an \mathcal{L}_n-semigroup or an $\mathcal{M}_n^{1,2}$-semigroup. Then S^n is a disjoint union of periodic groups.

Proof. By Lemma 1.7, I is an ideal and S/I has no nonzero idempotents. Since S/I is a homomorphic image of S, S/I is either an \mathcal{L}_n-semigroup or an $\mathcal{M}_n^{1,2}$-semigroup. By Corollary 1.5, $S^n \subseteq I$. Hence for all $x \in S^n$, there exists $l \geq 2$ such
that $x^1 = x$. It is well known (cf. [1, p. 23, Exercise 6a]), that this condition implies that S^n is a disjoint union of periodic groups.

Remark. A semigroup S is an \mathcal{L}_n-semigroup if and only if S^n is a disjoint union of periodic groups. Theorem 2.4 shows that a union of periodic groups is not necessarily an $\mathcal{M}_n^{1,2}$-semigroup.

Definition. A semigroup S is viable if $ab, ba \in E$ implies $ab = ba$. Idempotents are central in S if $ae = ea$, for every $e \in E, a \in S$.

Lemma 2.2. (i) If S is an $\mathcal{M}_n^{1,2}$-semigroup then idempotents are central in S.

(ii) For any semigroup S, if idempotents are central in S, then S is viable.

(iii) Let S be an \mathcal{L}_n-semigroup. Then S is viable if and only if idempotents are central in S if and only if idempotents commute in S.

Proof. (i) Let $e \in E, a \in S$. By (2) and (3), there exists f_2 such that $ea = e \cdots ea = se$ for some s in S. Hence $ea = eae$. Similarly $ae = eae$. Thus $ea = ae$.

(ii) Suppose $ab, ba \in E$. Then $ab = (ab)(ab) = a(ba)b = (ba)(ab) = b(ab)a = (ba)(ba) = ba$.

(iii) By Theorem 2.1, S^n is a union of groups. If S is viable then S^n is viable. By [3, Theorem 13], idempotents of S^n are central in S^n. Let $e \in E, a \in S$. Then $e = e^n$; $ea = e^{n-1}a \in S^n$. Hence $ea = e(ea) = (ea)e$. Similarly $ea = ae$. Therefore $ea = ae$, showing idempotents are central in S. The converse follows from (ii). If idempotents commute in S then (cf. [1, pp. 126, 127]), idempotents are central in S^n. The above argument shows idempotents are central in S. The following lemma is Lemma 3 of [2].

Lemma 2.3. Let S be a semigroup with central idempotents. If $a_1, a_2 \in S$ and $e_1 \in \langle a_1 \rangle, e_2 \in \langle a_2 \rangle, e \in \langle a_1a_2 \rangle$ where $e, e_1, e_2 \in E$, then $e_1e_2 = e$.

Theorem 2.4. Let S be a semigroup. The following are equivalent.

(i) S is an $\mathcal{M}_n^{1,2}$-semigroup.

(ii) S is an $\mathcal{M}_n^{1,2}$-semigroup.

(iii) S is an \mathcal{L}_n-semigroup and idempotents commute.

(iv) S is an \mathcal{L}_n-semigroup with central idempotents.

(v) S is a viable \mathcal{L}_n-semigroup.

(vi) S is an nth inflation of a semilattice of periodic groups.

Proof. (i) \Rightarrow (ii) a fortiori.

(ii) \Rightarrow (iii). By Theorem 2.1, S^n is a disjoint union of periodic groups. Let $a_1, \ldots, a_n \in S$. Then $a_1 \cdots a_n \in S^n$, so there exists $k \geq 2$ such that $a_1 \cdots a_n = (a_1 \cdots a_n)^k$. Consequently S is an \mathcal{L}_n-semigroup. By Lemma 2.2(i), idempotents are central in S so surely they commute.

(iii) \Rightarrow (iv) follows by Lemma 2.2(iii).

(iv) \Rightarrow (v). By Lemma 2.2(ii). S is viable.

(v) \Rightarrow (vi). By Theorem 2.1, S^n is a disjoint union of periodic groups. By Lemma 2.2(iii), idempotents are central in S, so certainly idempotents are central in S^n.

Hence (cf. [1, Theorem 4.11]), S^n is a semilattice of periodic groups. We show that S is an nth inflation of S^n. Define $\theta: S \to S^n$ by: $a\theta = ae$ where $e \in \langle a \rangle$. Clearly θ is the identity on S^n. Also if $a, b \in S$, $e_1 \in \langle a \rangle$, $e_2 \in \langle b \rangle$, then by Lemma 2.3, $e_1 e_2 \in \langle ab \rangle$. Hence $(ab)\theta = abe_1 e_2 = (ae_1)(be_2) = (a\theta)(b\theta)$. Hence θ is a homomorphism. If $a_1, \ldots, a_n \in S$, then $(a_1 \theta) \cdots (a_n \theta) = (a_1 \cdots a_n)\theta = a_1 \cdots a_n$ since θ is the identity on S^n.

(vi) \Rightarrow (i). Let G be a periodic group with identity e and let $a_1, \ldots, a_n \in G$. There exist integers $i > 1$, $j > 1$, $k > 1$ such that $a_1^i = e$, $a_2^j = e$, $(a_1 \cdots a_n)^k = (a_1 \cdots a_n)$. Thus $a_1 \cdots a_n = a_2^k (a_1 \cdots a_n)^k a_1^i$. Consequently G is an \mathcal{P}_n-semigroup. Thus by Corollary 1.2, S is an \mathcal{P}_n-semigroup.

Corollary 2.5. Let $\mathcal{X} \subseteq \mathcal{M}_n^{1, \infty}$. Then S is an \mathcal{X}-semigroup if and only if S is an nth inflation of a semilattice of \mathcal{X}-groups.

Proof. If S is an \mathcal{X}-semigroup, then it is an $\mathcal{M}_n^{1, \infty}$-semigroup. Hence S is an nth inflation of a semilattice of groups. Each of these groups, being a subgroup of S, is an \mathcal{X}-group. The converse follows from Corollary 1.2.

Corollary 2.6. Let $\mathcal{X} \subseteq \mathcal{M}_n^{1, \infty}$. Then S^{n-1} is in the center of S for every \mathcal{X}-semigroup S if and only if

(i) $\mathcal{X} \subseteq \mathcal{M}_n^{1, \infty}$, and

(ii) every \mathcal{X}-group is abelian.

Proof. The necessity of (ii) is clear. If (i) does not hold then there exists $f = x_1 \cdots x_n - f_2 \in \mathcal{X}$ such that f_2 starts with x_1 or ends with x_n. Let S_1 (respectively S_2) be a nontrivial right-(left-)zero semigroup. Then either S_1 or S_2 is an (f)-semigroup and hence an \mathcal{X}-semigroup. But $S_1^{n-1} = S_1$ ($S_2^{n-1} = S_2$) which is not in the center of S_1 (S_2).

Conversely assume (i) and (ii) hold. By Corollary 2.5, S is an nth inflation of a semilattice of \mathcal{X}-groups G_a. By (ii) each G_a is abelian and hence satisfies every permutation identity in n-variables. By Corollary 1.2, letting \mathcal{X} be any single permutation identity in n-variables, S itself satisfies every permutation identity in n-variables. In particular S^{n-1} is in the center.

Remark. In Corollary 2.6, we can replace the words “S^{n-1} is in the center of S” with “S satisfies every permutation identity in n-variables.”

Theorem 2.4 and Corollary 2.6 yield the main theorem and corollary of Tamura [4], when $n = 2$ and $\mathcal{X} = \{x_1 x_2 - f(x_1, x_2)\}$, f a fixed monomial in x_1 and x_2. In addition Theorem 2.4 generalizes the main theorem of [2].

3. Examples and problems.

Example 1. Theorem 2.1 is not true for $\mathcal{M}_n^{1, \infty}$-semigroups. Let S be the multiplicative semigroup of 2×2 matrices over $GF(2)$ consisting of $\begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, $\begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix}$. Then S satisfies $x_1 x_2 = x_1^2 x_2$ for all $\alpha \geq 2$ and hence S is an $\mathcal{M}_2^{1, \infty}$-semigroup. However $S^2 = S$ is not a union of groups.
Example 2. Theorem 1.1 is not true if the condition that every \(T_a \) has an identity is deleted. Let \(n = 2 \), \(\mathcal{X} = \{x_1x_2 - x_2x_1\} \). Let \(S \) be the semigroup given by:

\[
\begin{array}{ccc}
0 & a & b \\
0 & 0 & 0 & 0 \\
a & 0 & 0 & 0 \\
b & 0 & a & b \\
\end{array}
\]

Let \(T_1 = \{0, a\} \), \(T_2 = \{b\} \). Then \(T_1 \) and \(T_2 \) are \(\mathcal{X} \)-semigroups and \(S \) is a semilattice of \(T_1 \) and \(T_2 \). But \(S \) is not an \(\mathcal{X} \)-semigroup.

Problem 1. Theorems 2.1 and 2.4 characterize \(\mathcal{L}_n \)-semigroups and \(\mathcal{M}_n^{1,2} \)-semigroups. Characterize other \(\mathcal{X} \)-semigroups. Study semigroups which are \(\{f\} \)-semigroups for some \(f \in \mathcal{X} \).

Problem 2. Is there a "nice" subset \(\mathcal{X} \) of \(\mathcal{Y}_n \) such that \(S \) is an \(\mathcal{X} \)-semigroup if and only if \(S^n \) is a band of groups?

References

Department of Mathematics, University of California, Santa Barbara, California 93106

Current address (Mohan S. Putcha): University of California, Berkeley, California 94720