A generalized area theorem for harmonic functions on hermitian hyperbolic space
HTML articles powered by AMS MathViewer
- by Robert Byrne Putz
- Trans. Amer. Math. Soc. 168 (1972), 243-258
- DOI: https://doi.org/10.1090/S0002-9947-1972-0298049-2
- PDF | Request permission
Abstract:
Let $D$ be the noncompact realization of hermitian hyperbolic space. We consider functions on $D$ which are harmonic with respect to the Laplace-Beltrami operator. The principal result is a generalized area theorem which gives a necessary and sufficient condition for the admissible convergence of harmonic functions.References
- A. P. Calderón, On the behaviour of harmonic functions at the boundary, Trans. Amer. Math. Soc. 68 (1950), 47–54. MR 32863, DOI 10.1090/S0002-9947-1950-0032863-9
- A. P. Calderón, On a theorem of Marcinkiewicz and Zygmund, Trans. Amer. Math. Soc. 68 (1950), 55–61. MR 32864, DOI 10.1090/S0002-9947-1950-0032864-0
- S. G. Gindikin, Analysis in homogeneous domains, Uspehi Mat. Nauk 19 (1964), no. 4 (118), 3–92 (Russian). MR 0171941
- L. K. Hua, Harmonic analysis of functions of several complex variables in the classical domains, American Mathematical Society, Providence, R.I., 1963. Translated from the Russian by Leo Ebner and Adam Korányi. MR 0171936, DOI 10.1090/mmono/006
- Adam Korányi, The Poisson integral for generalized half-planes and bounded symmetric domains, Ann. of Math. (2) 82 (1965), 332–350. MR 200478, DOI 10.2307/1970645
- Adam Korányi, Harmonic functions on Hermitian hyperbolic space, Trans. Amer. Math. Soc. 135 (1969), 507–516. MR 277747, DOI 10.1090/S0002-9947-1969-0277747-0
- J. Marcinkiewicz and A. Zygmund, A theorem of Lusin. Part I, Duke Math. J. 4 (1938), no. 3, 473–485. MR 1546069, DOI 10.1215/S0012-7094-38-00440-5
- Robert Putz, Boundary behavior of harmonic functions on Hermitian hyperbolic space, Bull. Amer. Math. Soc. 77 (1971), 473–476. MR 284603, DOI 10.1090/S0002-9904-1971-12744-1 V. I. Smirnov, Integral equations and partial differential equations, Pergamon Press, Oxford, 1964.
- D. C. Spencer, A function-theoretic identity, Amer. J. Math. 65 (1943), 147–160. MR 7437, DOI 10.2307/2371778
- Elias M. Stein, On the theory of harmonic functions of several variables. II. Behavior near the boundary, Acta Math. 106 (1961), 137–174. MR 173019, DOI 10.1007/BF02545785
- Elias M. Stein, Boundary values of holomorphic functions, Bull. Amer. Math. Soc. 76 (1970), 1292–1296. MR 273055, DOI 10.1090/S0002-9904-1970-12645-3
- Kjell-Ove Widman, On the boundary behavior of solutions to a class of elliptic partial differential equations, Ark. Mat. 6 (1967), 485–533 (1967). MR 219875, DOI 10.1007/BF02591926
- A. Zygmund, Trigonometric series: Vols. I, II, Cambridge University Press, London-New York, 1968. Second edition, reprinted with corrections and some additions. MR 0236587
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 168 (1972), 243-258
- MSC: Primary 32A25
- DOI: https://doi.org/10.1090/S0002-9947-1972-0298049-2
- MathSciNet review: 0298049