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SMOOTH EXTENSIONS IN INFINITE

DIMENSIONAL BANACH SPACES

BY

PETER RENZf1)

Abstract. If B is /„(a>) or c0(<u) we show B has the following extension property.

Any homeomorphism from a compact subset M of B into B may be extended to a

homeomorphism of B onto B which is a C" diffeomorphism on B\M to its image in

B. This is done by writing B as a direct sum of closed subspaces B, and jB2 both

isomorphically isometric to B so that the natural projection of K into B, along B2

is one-to-one (see H. H. Corson, contribution in Symposium on infinite dimensional

topology, Ann. of Math. Studies (to appear)). With K, B, B, and B2 as above a homeo-

morphism of B onto itself is constructed which leaves the Si-coordinates of points in

B unchanged, carries K into B, and is a C" diffeomorphic map on B\K. From these

results the extension theorem may be proved by standard methods.

1. Introduction, outline and preliminaries. Our main result is the following

extension theorem.

Theorem 4.1. Let B be C0(<7) or lp(w) and let M and N be compact subsets of B.

Let f be a homeomorphism mapping M onto N. There is an extension f* of f to a

homeomorphism of B onto itself such that f* restricted to B\M isa C œ diffeomorphism

of B\M onto B\N.

We start with the following Splitting Theorem which is an immediate consequence

of the results and techniques of Corson [6].

Splitting Theorem (Corson). Let B be C0(oj) or Ip(oj). Let K be a o-compact

subset of B. Then B may be written as an internal direct sum B=BX + B2 where Bx

and B2 are both isomorphic to B and where the projection -nx of B into Bx along B2

yields a one-to-one map when restricted to K.

This theorem will be applied to a compact set K and -rrx(K) will be denoted Kx.

In this case 77! yields a homeomorphism of K onto Kx. Further, there is a con-

tinuous mapping g of Kx into Bx such that K={kx+g(kx) \ kx e Kx}. By a slight

abuse of the language we call {kx+g(kx) \ kx e Kx} the graph of g.

Thus we see that the compact set K is the graph of a continuous function g from

some set Kx which lies in a subspace Bx of infinite deficiency in B into B2 a

complement of Bx in B.
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The above observation about compact sets in certain infinite dimensional Banach

spaces leads to a proof of the extension theorem by fairly standard methods once

we have established the following somewhat technical result on smoothly flattening

graphs into subspaces.

Theorem 3.1. Let B be the direct internal sum of Banach spaces Bx and B2. Let

each of Bi and B2 satisfy at least one of the conditions of being separable or admitting

C °° partitions of unity subordinate to any open cover. Let Kr be a compact subset of

Bi and let K={kx +g(kA | &i 6 ^1} where g is a continuous map of Ky into B2. Then

there is a homeomorphism d of B onto B such that

(i) d(k) = ir1(k) for all k e K, where it-, is the natural projection of B into Bx

along B2,

(Ü)   TT1°d=1T1,

(hi) d restricted to B\K is a C diffeomorphism of B\K onto B\KX.

If both spaces allow C°° norms or are separable, thenp in (iii) may be taken to be co.

If one merely wants d to be a homeomorphism, d may be defined by d(x1+x2)

= x1 + x2—g*(x1), where g* is any continuous extension of g to a map from X-,

to X2. Such an extension of g is easily constructed. This shows that the topological

version of Theorem 3.1 follows immediately from the Splitting Theorem. The

difficulties which must be overcome here arise from the requirement of smoothness.

The reader will notice that the constructions presented here may be used in

spaces other than c0(oj) and p(u>). For separable spaces one need only check that

the spaces admit an appropriate splitting (see Corson [6]). For nonseparable spaces

one also needs smooth partitions of unity to carry through the construction of §3.

For the constructions of the other sections it is sufficient that the space admit

some suitable smooth function (for instance, a continuous norm which is C except

at the origin). The theory of the existence of smooth partitions of unity (Bonic

and Frampton [5]) applies to separable spaces. However, we have stated our results

so as to take advantage of any extension of this theory to nonseparable spaces.

The splitting and flattening theorems above were devised to take compact

subsets of infinite dimensional Banach spaces into subspaces of infinite deficiency.

Once a compact set has been carried into a subspace of infinite deficiency it may be

extracted by a refinement of the process used by Bessaga [3]. In this way with some

effort and delicacy one may prove that the removal of closed locally compact

subsets from a smooth infinite dimensional 5-manifoId M leaves the differentiable

structure of M unchanged for many Banach spaces B (for details, see the author's

dissertation [20]).

Several authors have considered or used results on the negligibility of various

spacial sorts of subsets of various infinite dimensional manifolds. For the topo-

logical case, see Bessaga's notes [4] which survey the field. This author does not

know of such a survey in the differentiable case. However, we have the work of

Bessaga [3], Eells and Kuiper [11], Martens [16], and Cutler [7] to mention a few.
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Results of this sort must be compared with those obtained by a very different

and much deeper approach. A series of results starting with Kuiper's paper

showing that the general linear group of l2(œ) is contractible [13] has led to the

characterization up to diffeomorphism of most common infinite dimensional

Banach manifolds M by the homotopy type of M. (See papers of Kuiper and

Burghelea [14], Moulis [17], Eells and Elworthy [10] for results on manifolds.

See papers of Neubauer [18], Edelstein, Mitjagin and Semenov [9] for papers on

contractibility of general linear groups of Banach spaces.) This deep theory together

with results known in the topological case leads to the fact that removal of closed

cr-compact subsets does not change the C°° structure of such manifolds.

The approach to negligibility presented here has the advantage of being more

elementary. It may be extended to nonseparable spaces in so far as these spaces

admit suitable splittings (one only needs Bx to be of infinite deficiency in B) and

smooth partitions of unity. The needed splitting theorem is not hard to prove for

nonseparable spaces. However, the question of partitions of unity in such spaces

is still open even when the spaces have smooth norms. The techniques used here

do not lead to the stronger classification of manifolds mentioned above.

The following outlines the steps in establishing the extension theorem. In §1 we

introduce the notion of smooth approximation and prove a series of lemmas

leading to our main lemma on flattening graphs into subspaces (Lemma 2.4). In

§3 we show that continuous functions on compact sets in the context of Theorem

3.1 always satisfy the smooth approximability condition of Lemma 2.4. This leads

immediately to a proof of Theorem 3.1. In §4 we use the Splitting Theorem of

Corson and the remarks about compact sets and graphs of this introductory section

to show that Theorem 3.1 may be applied in a symmetrical way to obtain a special

result on flattening compact sets in c0(o/) or lp(oS). From this result the proof of

Theorem 4.1 is direct.

The author expresses his debt to Harry Corson who suggested the problem which

led to these results. Professor Corson made many helpful strategic and tactical

suggestions during this work. In particular, he pointed out that it was possible to

obtain extension results from flattening results by the methods used here. The

outline of this extension process in the topological case comes from Klee [12].

The author's thesis and its results given here depend upon the general methods and

to some extent upon specific results of Klee's work on infinite dimensional topology.

It is my pleasure to acknowledge this debt to Professor Klee and his work.

Almost all of the notation used is standard. The symbol R stands for the real

numbers and when TV appears for an index set it denotes the positive integers.

If a function is p times continuously differentiable we say it is C". If a function is

C for all p in N we say it is C00. We will use Df,f, or (d/dx)f to denote the

derivative of a function / the notation chosen will be appropriate to the context.

The abbreviations cl and int will be used for the topological operations of closure

and interior.
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2. Smooth approximation and the flattening of graphs. Let X and Y be normed

linear spaces and let U be an open subset of X. We say a sequence of functions

{/„ | « e N) from X into Y smoothly approximates the function/from A" to F on

U provided

(i) ||/n(x)— /(x)|| tends to zero uniformly in x as « tends to infinity, and

(ii) /„ is eventually constant as a function of « locally on U (i.e. for each u e U

there is a neighborhood U(u) of u and an integer n(u) such that/.(x)=/m(x) for all

x g U(u) and all integers k, m^n(u)).

Lemma 2.1. Let X and Y be normed linear spaces and let the map f of X into Y

be smoothly approximable on U by a sequence of Cp functions. There is a function F

from R x X into Y such that

(i) F(r, ■) is eventually constant as a function of r as r tends to 1 locally on U.

(ii) F is continuous and F(r, x) is C°° in r and Cp in x if r < 1 or x e U.

(iii)F(z-, •)=/(•) ifr^l.

(iv) iDJir, x)\\ ̂ \for all r in R and x in X.

Proof. Let hn be a sequence of nondecreasing infinitely differentiable functions

from R to R satisfying

hn(x) = 0    ifx ^ 1-21-",

hn(x) =1    if x ä 1 -2~n   for all « in N.

Let an be a sequence of real numbers such that h'Jx) < an for all x in R and all « in

N. By our hypothesis we may find a sequence/, of Cp functions smoothly approxi-

mating/on U satisfying ||/„— f\\ Ú iak 2 for all k ¿ n +1 for all «in N. We define F by

F=fl+2hn+l-ifn+l-fn) (» 6 N).

Since the series defining F has only finitely many nonzero terms in some neigh-

borhood Sx U(x) of a point (r, x) with x in U and since each hk(r) eventually

becomes identically 1 as r tends to 1 property (i) is true. Similarly if r< 1, the series

defining /"consists of only finitely many terms on the neighborhood ( — oo, \(r+ 1))

x X of (r, x). Since each term of the series is C°° in r and Cp in x, it follows that

the function F which is a finite sum in a neighborhood of any point (r, x) such that

z"<l orxe L/is C°° in rand Cp in x on {(/, x)e(Äx X)\ r<l orx e U}as required

in (ii).

The mean value theorem ensures that ak~¿2k. The following estimate shows

that the series defining F is absolutely and uniformly convergent on Rx X.

2 \\hk+Ar)ifk+iix)-fkix))\\

¿ 2 l**+iWI IIA+iM-A(x)|| (¿eW)

â 2 «I/k+i(*)-/(*)« + ll/W-AWII)      (* 6 N)

a¡(K+2! + K2) ikeN)

<  00 (Jfc 6 N).
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Hence Fis the sum of an absolutely and uniformly convergent series of continuous

functions and therefore Fis a continuous function onfixl. Thus (ii) is established.

If r ^ 1, then hk + x(r)= 1 for all k in TV and the series defining F(r, •) is a telescoping

series with limit/(•)• Thus (iii) is established.

The following estimate shows that the derived series is absolutely and uniformly

convergent; hence, by a standard theorem (Dieudonné [8, 8.6.5]) term by term

differentiation is justified and \\DxF(r, xx)\\ ^k\. We have

2l/'ñ+l('-)(/n+1(x1)-/l(A-1))|¡

â 2 l^+i(0|(||/n + i-/|| + ü/-/ntl)        (neN)

=  2 a"+ l(i°"+2l + Íañ+í) i" e N)

¿ i ine N),

since an }¡¡ 2" for n in N. This establishes (iv).

The context and notation of the next lemma are as follows. The normed linear

space A'is the direct internal sum of subspaces Xx and X2. We assume the natural

projections of X into Xx and X2 have operator norm less than or equal to 1. There

is a continuous function / mapping Xx to X2 and Gf={xx+f(xx) \ xx e Xx} is

called the graph off. The set Gf is a closed subset of X= Xx + X2 since/is continu-

ous.

Lemma 2.2. Let X, Xx and X2 be as above. Let f: Xx -> X2 be the uniform limit

of C" functions. Assume the norm of X2 is C on X2\{0}. (Alternatively, assume X2

is separable.) There is a continuous function <f> from X to [0, 1 ] which is C (alter-

natively, C") on Y=X\Gfsuch that \\D2</>\\ g£ and<p(x)=l exactly when x e Gf.

Proof. Let a, b, c and d be positive numbers with a < b. Let h be a nonincreasing

C°° function from R to R satisfying

c ä h(r) = h(0) > 0   whenever r s= a,

h(r) = 0 whenever r ^ b,

\h'(r)\ á d for all r in R.

Let e be a positive number and let g be a C function from Xx to X2 such that

\\g(xx)—f(xx)\\<e. Then i>(xx + x2) = h(\\x2—g(xx)\\) is a nonnegative Cp function

on X satisfying

c ä í(xx+x2) = h(0) > 0   if \\x2-f(xx)\\ ÍM

(*) Hxx + x2) = 0 if Ixa-TT^)! ä b + e,

II ̂02^(^1 + x2) || ^ z/ for all (xx + x2) e X.

The nonnegativity and first two properties of </j are evident. Off of

Gg = (xx+g(xx) | xxeXx}
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the function 0 is a composition of Cp functions, while at each point of Gg the

function xfj is locally constant. Thus xf> is at least C" on X. The bound on the norm

of D2x/> is established by taking D2 by the usual methods (Lang [15]) and using the

fact that the operator norm of the derivative of the norm of any Banach space is

less than or equal to 1.

We fix sequences an, bn, cn and en of positive numbers such that

an<bn and bn+1+en+1<an — en for all « in N,

bn tends to zero as « tends to infinity,

1 ̂  2 cn i» e A7), and

i^2dn(neN),

(e.g., an = 2-2", bn = 2an, cn = 2^\ dn = \cn, and £„ = 2 "4(" + »).

We take a sequence x/¡n of nonnegative C" functions on X satisfying conditions

(*) with a = an, b = bn, c = cn, d=dn and e = en. We set

P(x) = 2 Ux)       in e A).

The conditions ensure that xfj* is an absolutely and uniformly convergent sum of

continuous functions and hence continuous.

Since/is the uniform limit of C" functions,/is continuous. If ÍXí + x2) e Y, then

x2#/(Xi) and for some « ||x2— /(Xi)fl >bn + en. Since this inequality holds at Xx+x2

and since the functions involved are continuous, it holds in a neighborhood of

x1+x2. But this inequality implies xpk vanishes for k^n. Hence xjj* is locally a

finite sum of Cp functions and thus Cp on Y.

Each point X!+x2 of Gf satisfies 0= ¡Jfa—/(*i)| <an — en for all « in N. Thus x/>*

equals the constant

i/* = 2«x1+/(x1))       (neN)

on Gf. Clearly, d*>xj>*(x1 + x2) if (x1+x2) e Y, since x/jn(xx +f(x1)) is positive and

x/>n(x1+x2)^x/in(x1+f(x1)) for all « in A7 while only finitely many of the terms

xpnixi + x^) are nonzero. Thus xp* attains its supremum d* precisely on the set Gf.

The derived series for D2xp* is absolutely and uniformly convergent in view of

the bounds on |]Z)2i/in||. Thus, term by term differentiation is justified and ||Z)2</i*||

^■J. The function i/J* has most of the properties we require. To obtain a function

having all the desired properties, it is sufficient to set cf> = xp* + (l —d*). This insures

that the supremum of </> which is obtained only on Gf is equal to 1. It is clear that

cj> is as differentiable as x/>* and that ||/J2^|| = \D2x/j*\\ g A. Thus cf> has all the proper-

ties required in the lemma.

In this construction we may use any Cp function N(A on X2 in place of the

norm || • || of X2 provided Nis a norm and N(x)S \\x\\ for all x in X2. To establish

the alternative reading it suffices to show that any separable Banach space Y admits

a possibly weaker norm N(-) with the above properties. To do this let F be a

separable Banach space and let {yn | « e A} be a sequence of points of norm 1 in

Y whose range is dense in the unit sphere of Y. We may construct a sequence of
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linear functionals {/„ | n e N} on Y each of norm 1 such that/n(yn)= 1 for 77 e N.

It is easily seen that

N(y) = (J 2-»f/B0'))a)1/S

isa C* norm on Y with the desired properties. This shows that every separable

space admits a smaller and possibly weaker Cœ norm and thus establishes the

alternative reading of the lemma. An alternative approach is to use the fact that

any separable Banach space is isometrically isomorphic with a closed subspace of

C[0, 1] which admits a C° norm of the desired sort, namely the ¿¡f2 norm.

We need the following version of Banach's contraction principle. We omit the

proof which is simply an exercise in the properties of contraction maps.

Lemma 2.3. Let Xx be a normed linear space and X2 be a Banach space. Let

X= Xx + X2 and let h be a continuous function from X to X2 such that

\\h(xx + x2)-h(xx+x'2)\ g |||x2-x2||

for all xx e Xx and x2, x'2 e X2. Let d be a mapping defined by d(xx + x2) = xx+x2

+ h(xx +x2). Then d is a homeomorphism of X onto itself, and d is a C diffeomor-

phism when restricted to any open set on which h is Cv.

These lemmas lead to a proof of our main lemma.

Lemma 2.4. Let Xx be a normed linear space and X2 a Banach space with C

norm. (Alternatively, let X2 be a separable Banach space.) Let f: Xx -*■ X2 be

smoothly approximable by C functions on U. Let Gfbe the graph off. Let Kx = XX\U

and let K={kx +g(kx) \ kx e Kx}. Then there is a homeomorphism d of Xx + X2 = X

onto itself such that

(i) d(Gf) = MGf),
(Ü)  d° irx =/rx,

(iii) d restricted to X\K is a C diffeomorphism of X\K onto X\KX.

(Alternatively,

(iii) d restricted to X\K is a C" diffeomorphism of X\K onto X\KX.)

Proof. By the conditions of the theorem there exist functions F and <f> satisfying

the conditions in Lemmas 2.1 and 2.2 with respect to Xx, X2, and/ We define

h(xx + x2) for (xx + x2)e X by

h(xx+x2) = F(<f>(xx+x2),xx).

The function h defined above is the composition of continuous functions and thus

continuous. If (xx+x2) $ Gf then cf> is Cp at xx+x2 by the conditions of Lemma

2.2, and Fis C at (<f>(xx+x2), xx) because <f>(xx + x2)< 1. Thus, h is Cp on X\Gf

If (ax+a2) e (Gf\K), then ax e U. Thus, as in Lemma 2.1, there is a neighborhood

U(ax) of ax and an r(ax)< 1 such that F(r, xx)=f(xx) if r>r(ax) and xx e U(ax).
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Now (fli+a2) e Gf so cb(a1+a2)= 1. Since <j> is continuous, there is a neighborhood

V of ai + fl2 such that ch(x1+x2)>r(a1) and Xi e U(aA for all (Xi + x^e V. For

(xj + x^e K,

FiKxi +x2), x,) = F(Kv(«i)+l), *i) = /(*i).

Thus /z is Cp on F since |(''(0i)+ 1) is a C°° function less than 1 on Fand F(r, Xj)

is a Cp function of .\\ if r< 1. This shows /z is a C function on (A'\G/) u (Gf\K)

— X\K. It also shows that if(xy+x2) e(Gf\K) and Kis as above, then D2h = 0 on

V since /z does not depend on the second coordinate within V.

Computing D2h we have

D2h(xx+x2) = D1F(cb(x1+x2), Xi) ° D2cp(xx + x2).

The bounds on the norms of Z^Fand D2cb give us |¡Z)2/i(x1 + .x2)|j ̂ \-\ = \ when

(xj + x2) xf Gf. Since h is continuous and X\Gf is dense in X, we may use the mean

value theorem (Corollary 1, Proposition 17, Chapter 1, §4 of Lang [15]) to show

that the inequality

\\Kxi+x2)-hiXi+x'a)\\ é i[|x2-x'2|]

holds for all x2, x2 e X2 for all xx 6 X-,. Thus Lemma 2.3 applies to the function

d(x1+x2) = x1 + x2-h(x1+x2) defined for all (x1+x2)e X. It is clear from the

definition of d that (ii) holds.

Applying Lemma 2.3 to the function a" we see that d is a homeomorphism of X

onto itself. Since d is Cp on X\K it is a C" diffeomorphism of X\K onto d(X\Ki).

If (xj +x2) e Gf, then /z(xj. +x2) = F(l, x1)=f(x1) = x2 and

d(xx + x2) = x1+x2-h(x1 + x2) = xt+x2—x2 = xx.

This establishes (i). In view of the above paragraph, to complete the proof it is

sufficient to show that d(X\K) = X\K1, or equivalently d(K) = K1. But this follows

from (i) and the definitions of K and K-¡_.

Lemma 2.4 outlines conditions under which certain kinds of subsets K of

X=XY + X2 may be carried smoothly into X\. We will see that the conditions of

this lemma are easily satisfied when the subset K is compact and X is an infinite

dimensional Banach space. There are two requirements for applying Lemma 2.4.

First, the set K must be the graph of a continuous function from Xx to X2 and

second, that function must be smoothly approximate on i/= A'1\7r1(A'). The

Splitting Theorem shows circumstances under which compact sets may be regarded

as graphs of continuous functions. We now take up the problem of smooth

approximation.

3. Smooth approximation of functions. Let B be a Banach space which is the

internal direct sum of subspaces ßj and B2. Let Ä^ be a subset of Br and let g be

a continuous function from Kx to B2. Let K={k1+g(k1) | k-, e K^}. When may g

be extended to a function / mapping B± into B2 so that F, Bu B2, and Kx satisfy the

hypotheses of Lemma 2.4?
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We show that it is sufficient to assume K (and hence Kx) is compact and that

each of Bx and B2 is either separable or admits Cp partitions of unity subordinate

to any open cover. On B2 either of these assumptions is sufficient to apply Lemma

2.4. We show below that either of these assumptions on Bx will insure that g has

an extension/satisfying the conditions above.

Let Bx admit Cp partitions of unity. We will construct a series of C" functions

/„ whose partial sums approximate g on Kx and smoothly approximate/= 2"= xfn

on BX\KX. Thus/is an extension of g of the desired sort.

Since Kx is compact and g is continuous, g is uniformly continuous on Kx. Let

i\ be a finite cover of Kx by open sets in Bx such that \\f(k)-f(k')\\ ^ 1 for all k,

k' e V n K for all Ve 'V-,. We further assume that the diameter of each Ke t7 is

less than or equal to 1. For each Ke^ select a kx(V)e V. Let {</>v \ Vei\}

u {<pv} be a Cp partition of unity subordinate to the cover "¡7 u {U} of Bx. Define

/by

fi = 2g(kx(V))4>v       (Verx).

Then

lk(*)-/i(*)|| =    2 sikx(V))Mk)- 2 #M)

= 2 lk(^i(n)-/Wl W*)l

^  2 1-^(*)S 1 =2°
V£^!

for every /V e A". This defines a Cp function/ which approximates g on A" to within

1 and vanishes off of the neighborhood (J Vx of K. By the same process, we may

produce a C" function /2 which approximates g— / on A" to within •£ on A" and

which vanishes off of (J "¡Tj, where ^ is an open cover of K in Bx none of whose sets

have diameter greater than \. In the construction we will have

11/aWII  = 2 (s(*a(r))-/i(*a(K))#v(*)
vs~r2

^ 2 ik(^(^))-/i(*a(n)iiM*) = 2 iw*) = i.
VeiT2 Ve-f2

Continuing in this way the sequence /„ is constructed so that

(i) \\g(k)-Tk = xfn(k)\\ ¿21-" for all k e K and n=l,2,3,...,

(ii) ||/„(MI ^22- for 7 e Bx and « = 2, 3, 4,...,

(iii) /„ vanishes off of the set Vn = U'K and C)?=1 Vn = K.

The final condition may be assured by insisting that the diameters of the Vneirn

be less than 21~n. These conditions clearly ensure that 2/n (neN) is uniformly

convergent on Bx and that 2"=i/ approximates 2t" 1/ smoothly by Cp functions

on 57A:. Furthermore, it is clear that g(k)=f(k) = J_?=xf(k) for all k e K. This

completes the case where Bx admits Cp partitions of unity.
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In the case where Bx is separable we proceed similarly using weak open sets in

place of strong open sets. This technique is suggested by the methods of Anderson

[1]. Since K is compact the weak and strong topologies on K agree. Since BX\K

is Lindelöf in the strong topology and the identity map from the strong to weak

topology is continuous, C/is Lindelöf in the weak topology. Since the weak topology

is regular, K is a weak G6. In fact, we see that there is a family of weak open sets

{{/„ | n e N) such that K=(~) Un (n e N). To construct our sequence {/„ | n e N}

we take a weak cover TT* of A" by a finite family of weakly open subsets of Bx

such that \\g(k)-g(k')\\<l for all k, k' e V* n K where V* e "T?. With

{[/„ | neN} as above, set irx = {Vx n V* \ V* e ■ff), Only a finite number of

linear functionals are required to define the weak open sets of 'fl ; thus Bx may be

mapped into a finite dimensional space Ex by a linear mapping h so that each

Vei^l is the inverse image of an open set, h(V), in Ex. Take a C°° partition of

unity subordinate to the cover {g(V) | Kefju (Ex\h(K)) ofEx. This C00 partition

of unity on Ex induces a C° partition of unity on Bx subordinate to 17

u h~1(Ex\h(K)). We proceed as in the construction of/. The construction proceeds

by induction as before, the only difference being that instead of insisting that the

elements of "f"n be of diameter less than 21_n, we insist that the elements of "r\\ be

contained in £/„. This assures that condition (iii) is fulfilled since A"=f) Un (n e TV).

The above prepares the way for a proof of the following.

Theorem 3.1. Let B be the direct internal sum of Banach spaces Bx and B2. Let

each of Bx and B2 satisfy at least one of the conditions of being separable or admitting

Cp partitions of unity subordinate to any open cover. Let Kx be a compact subset of

Bx and let K={kx +g(kx) \ kx e Kx} where g is a continuous map of Kx into B2. Then

there is a homeomorphism d of B onto B such that

(i) d(k) = /rx(k) for all ke K, where irx is the natural projection of B into Bx

along B2,

(ii) ttx o d=irx,

(iii) d restricted to B\K is a C diffeomorphism of B\K onto B\KX.

If both spaces allow Cm norms or are separable, thenp in (iii) may be taken to be 00.

Proof. Let Kx, g, B, Bx and B2 be as in the hypothesis of Theorem 3.1. By previous

arguments we know that g may be extended to a function / mapping Bx into B2

such that / is smoothly approximable by at least C" functions on U=BX\KX.

Applying Lemma 2.5 we obtain the mapping d which satisfies the conclusions of

Theorem 3.1.

4. Smooth extensions. We may now easily prove the following result on

extensions.

Theorem 4.1. Let B be C0(">) or l„(w) and let M and N be compact subsets of B.

Let f be a homeomorphism mapping M onto N. There is an extension f* off to a

homeomorphism ofB onto itself such thatf* restricted to B\M isaC diffeomorphism

of B\M onto B\N.
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Proof. First we consider a special case. Let B be a separable Banach space written

as the direct internal sum of subspaces Bx and B2. Let M be a compact subset of

Bt and N a compact subset of B2. Let g be a homeomorphism from M to N. We

show g may be extended to a homeomorphism g* of B onto B such that g* restricted

to B\M is a C°° diffeomorphism of B\M onto B\N.

To construct g* we apply Theorem 3.1 with B1 and 7i2 as above and with

K={m + g(m) | m e M} and K1 = tt1(K) = M. The function g of Theorem 3.1 is as

above. By Theorem 3.1 there is a homeomorphism d-, of B onto itself satisfying

(i) d1(k) = d1(Tr1(k))=g(-rr1(k)) = ir1(k) for all k e Kor, equivalently, dr(m+g(m))

= m for all me M,

(Ü) ir1°d1=Tr1,

(iii) dx restricted to B\K={m + g(m) \ m e M) is a C° diffeomorphism of B\K

onto y?\A:1 = Ä\M.

Interchanging the roles of i?! and B2 and thinking of A^ as the graph of g'1,

K={n + g~1(n)\ne N} = {m+g(m)\me M},  we  apply  Theorem   3.1   again  to

obtain a homeomorphism d2 if B onto itself satisfying

(i') d2(n+g-1(n)) = n for all « e A,

(ii')  1T2°d2 = 1T2,

(iii') í/2 restricted to 5\A:is a C°° diffeomorphism of Aconto B\N.

A calculation shows that d2° (dï1)(m) = d2(m + g(m))=g(m) for all meM. <

Thus g* = d2 ° (o*fx) is an extension of g to a homeomorphism of 5 onto B.

Conditions (iii) and (iii') show thatg* restricted to 5\Mis a C°° diffeomorphism of

B\M onto B\N.

To complete the proof of Theorem 4.1 we reduce the general extension problem

to the special case considered above by using the hypothesis that B is C0(co) or

/p(tu). Let/ M, N and B be as in the hypotheses of Theorem 4.1. By the Splitting

Theorem we write B as the direct sum of isomorphic subspaces Bx and B2 so that

ir-, determines a homeomorphism of K=M u N onto K1=ir1(K). Then there is a

continuous function g mapping Á^ into B2 such that K={kx +g(k±) | k-, e K^}. Since

B is separable so are B^ and B2. Theorem 3.1 in its alternative reading applies.

Let d be a homeomorphism of B onto itself satisfying the conclusions of the

alternative reading of Theorem 3.1.

Since Bx and B2 are isomorphic we can and will let h denote a linear isometry of

B-* onto B2. The result established above now applies to the homeomorphism

g = h o dofo (d'1) of d(M) onto h(d(N)). Thus we may extend g to g* as above.

Calculation shows thatf* = (d~1)°(h~1)°g*°dis an extension off which has

the properties required in the conclusion of Theorem 4.1. Thus Theorem 4.1 is

proved.
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