## Smooth extensions in infinite dimensional Banach spaces

HTML articles powered by AMS MathViewer

- by Peter Renz
- Trans. Amer. Math. Soc.
**168**(1972), 121-132 - DOI: https://doi.org/10.1090/S0002-9947-1972-0298712-3
- PDF | Request permission

## Abstract:

If $B$ is ${l_p}(\omega )$ or ${c_0}(\omega )$ we show $B$ has the following extension property. Any homeomorphism from a compact subset $M$ of $B$ into $B$ may be extended to a homeomorphism of $B$ onto $B$ which is a ${C^\infty }$ diffeomorphism on $B\backslash M$ to its image in $B$. This is done by writing $B$ as a direct sum of closed subspaces ${B_1}$ and ${B_2}$ both isomorphically isometric to $B$ so that the natural projection of $K$ into ${B_1}$ along ${B_2}$ is one-to-one (see H. H. Corson, contribution in*Symposium on infinite dimensional topology*, Ann. of Math. Studies (to appear)). With $K,B,{B_1}$ and ${B_2}$ as above a homeomorphism of $B$ onto itself is constructed which leaves the ${B_1}$-coordinates of points in $B$ unchanged, carries $K$ into ${B_1}$ and is a ${C^\infty }$ diffeomorphic map on $B\backslash K$. From these results the extension theorem may be proved by standard methods.

## References

- R. D. Anderson,
*On a theorem of Klee*, Proc. Amer. Math. Soc.**17**(1966), 1401–1404. MR**205029**, DOI 10.1090/S0002-9939-1966-0205029-4 - R. D. Anderson,
*Strongly negligible sets in Fréchet manifolds*, Bull. Amer. Math. Soc.**75**(1969), 64–67. MR**238358**, DOI 10.1090/S0002-9904-1969-12146-4 - C. Bessaga,
*Every infinite-dimensional Hilbert space is diffeomorphic with its unit sphere*, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys.**14**(1966), 27–31 (English, with Russian summary). MR**193646**
—, - Robert Bonic and John Frampton,
*Smooth functions on Banach manifolds*, J. Math. Mech.**15**(1966), 877–898. MR**0198492**
H. H. Corson, - William H. Cutler,
*Negligible subsets of infinite-dimensional Fréchet manifolds*, Proc. Amer. Math. Soc.**23**(1969), 668–675. MR**248883**, DOI 10.1090/S0002-9939-1969-0248883-5 - J. Dieudonné,
*Foundations of modern analysis*, Pure and Applied Mathematics, Vol. X, Academic Press, New York-London, 1960. MR**0120319** - B. S. Mitjagin,
*The homotopy structure of a linear group of a Banach space*, Uspehi Mat. Nauk**25**(1970), no. 5(155), 63–106 (Russian). MR**0341523** - J. Eells and K. D. Elworthy,
*Open embeddings of certain Banach manifolds*, Ann. of Math. (2)**91**(1970), 465–485. MR**263120**, DOI 10.2307/1970634 - James Eells Jr. and Nicolaas H. Kuiper,
*Homotopy negligible subsets*, Compositio Math.**21**(1969), 155–161. MR**253331** - Victor L. Klee Jr.,
*Convex bodies and periodic homeomorphisms in Hilbert space*, Trans. Amer. Math. Soc.**74**(1953), 10–43. MR**54850**, DOI 10.1090/S0002-9947-1953-0054850-X - Nicolaas H. Kuiper,
*The homotopy type of the unitary group of Hilbert space*, Topology**3**(1965), 19–30. MR**179792**, DOI 10.1016/0040-9383(65)90067-4 - Dan Burghelea and Nicolaas H. Kuiper,
*Hilbert manifolds*, Ann. of Math. (2)**90**(1969), 379–417. MR**253374**, DOI 10.2307/1970743 - Serge Lang,
*Introduction to differentiable manifolds*, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR**0155257** - Phillip A. Martens,
*Representations of infinite dimensional manifolds and $\infty -p$ homology functors*, Bull. Amer. Math. Soc.**76**(1970), 641–645. MR**261634**, DOI 10.1090/S0002-9904-1970-12471-5 - Nicole Moulis,
*Sur les variétés Hilbertiennes et les fonctions non dégénérées*, Nederl. Akad. Wetensch. Proc. Ser. A 71 = Indag. Math.**30**(1968), 497–511 (French). MR**0254876**, DOI 10.1016/S1385-7258(68)50061-1 - Gerhard Neubauer,
*Der Homotopietyp der Automorphismengruppe in den Räumen $l_{p}$ und $c_{0}$*, Math. Ann.**174**(1967), 33–40 (German). MR**219088**, DOI 10.1007/BF01363121
P. Renz,

*Topics from infinite dimensional topology*, Lecture Notes Series No. 18, Matematisk Institut, Aarhus, 1969.

*Thin sets in Fréchet spaces*, Sympos. on Infinite Dimensional Topology (Baton Rouge, 1967), Ann. of Math. Studies, Princeton Univ. Press, Princeton, N. J., 1971.

*Smooth extensions and extractions in Banach spaces*, Notices Amer. Math. Soc.

**16**(1969), 557. Abstract #666-21. —,

*Smooth extensions and smooth extractions*, Thesis, University of Washington, Seattle, Wash., 1969.

## Bibliographic Information

- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**168**(1972), 121-132 - MSC: Primary 58B05
- DOI: https://doi.org/10.1090/S0002-9947-1972-0298712-3
- MathSciNet review: 0298712