Smooth extensions in infinite dimensional Banach spaces
HTML articles powered by AMS MathViewer
- by Peter Renz
- Trans. Amer. Math. Soc. 168 (1972), 121-132
- DOI: https://doi.org/10.1090/S0002-9947-1972-0298712-3
- PDF | Request permission
Abstract:
If $B$ is ${l_p}(\omega )$ or ${c_0}(\omega )$ we show $B$ has the following extension property. Any homeomorphism from a compact subset $M$ of $B$ into $B$ may be extended to a homeomorphism of $B$ onto $B$ which is a ${C^\infty }$ diffeomorphism on $B\backslash M$ to its image in $B$. This is done by writing $B$ as a direct sum of closed subspaces ${B_1}$ and ${B_2}$ both isomorphically isometric to $B$ so that the natural projection of $K$ into ${B_1}$ along ${B_2}$ is one-to-one (see H. H. Corson, contribution in Symposium on infinite dimensional topology, Ann. of Math. Studies (to appear)). With $K,B,{B_1}$ and ${B_2}$ as above a homeomorphism of $B$ onto itself is constructed which leaves the ${B_1}$-coordinates of points in $B$ unchanged, carries $K$ into ${B_1}$ and is a ${C^\infty }$ diffeomorphic map on $B\backslash K$. From these results the extension theorem may be proved by standard methods.References
- R. D. Anderson, On a theorem of Klee, Proc. Amer. Math. Soc. 17 (1966), 1401–1404. MR 205029, DOI 10.1090/S0002-9939-1966-0205029-4
- R. D. Anderson, Strongly negligible sets in Fréchet manifolds, Bull. Amer. Math. Soc. 75 (1969), 64–67. MR 238358, DOI 10.1090/S0002-9904-1969-12146-4
- C. Bessaga, Every infinite-dimensional Hilbert space is diffeomorphic with its unit sphere, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 14 (1966), 27–31 (English, with Russian summary). MR 193646 —, Topics from infinite dimensional topology, Lecture Notes Series No. 18, Matematisk Institut, Aarhus, 1969.
- Robert Bonic and John Frampton, Smooth functions on Banach manifolds, J. Math. Mech. 15 (1966), 877–898. MR 0198492 H. H. Corson, Thin sets in Fréchet spaces, Sympos. on Infinite Dimensional Topology (Baton Rouge, 1967), Ann. of Math. Studies, Princeton Univ. Press, Princeton, N. J., 1971.
- William H. Cutler, Negligible subsets of infinite-dimensional Fréchet manifolds, Proc. Amer. Math. Soc. 23 (1969), 668–675. MR 248883, DOI 10.1090/S0002-9939-1969-0248883-5
- J. Dieudonné, Foundations of modern analysis, Pure and Applied Mathematics, Vol. X, Academic Press, New York-London, 1960. MR 0120319
- B. S. Mitjagin, The homotopy structure of a linear group of a Banach space, Uspehi Mat. Nauk 25 (1970), no. 5(155), 63–106 (Russian). MR 0341523
- J. Eells and K. D. Elworthy, Open embeddings of certain Banach manifolds, Ann. of Math. (2) 91 (1970), 465–485. MR 263120, DOI 10.2307/1970634
- James Eells Jr. and Nicolaas H. Kuiper, Homotopy negligible subsets, Compositio Math. 21 (1969), 155–161. MR 253331
- Victor L. Klee Jr., Convex bodies and periodic homeomorphisms in Hilbert space, Trans. Amer. Math. Soc. 74 (1953), 10–43. MR 54850, DOI 10.1090/S0002-9947-1953-0054850-X
- Nicolaas H. Kuiper, The homotopy type of the unitary group of Hilbert space, Topology 3 (1965), 19–30. MR 179792, DOI 10.1016/0040-9383(65)90067-4
- Dan Burghelea and Nicolaas H. Kuiper, Hilbert manifolds, Ann. of Math. (2) 90 (1969), 379–417. MR 253374, DOI 10.2307/1970743
- Serge Lang, Introduction to differentiable manifolds, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155257
- Phillip A. Martens, Representations of infinite dimensional manifolds and $\infty -p$ homology functors, Bull. Amer. Math. Soc. 76 (1970), 641–645. MR 261634, DOI 10.1090/S0002-9904-1970-12471-5
- Nicole Moulis, Sur les variétés Hilbertiennes et les fonctions non dégénérées, Nederl. Akad. Wetensch. Proc. Ser. A 71 = Indag. Math. 30 (1968), 497–511 (French). MR 0254876, DOI 10.1016/S1385-7258(68)50061-1
- Gerhard Neubauer, Der Homotopietyp der Automorphismengruppe in den Räumen $l_{p}$ und $c_{0}$, Math. Ann. 174 (1967), 33–40 (German). MR 219088, DOI 10.1007/BF01363121 P. Renz, Smooth extensions and extractions in Banach spaces, Notices Amer. Math. Soc. 16 (1969), 557. Abstract #666-21. —, Smooth extensions and smooth extractions, Thesis, University of Washington, Seattle, Wash., 1969.
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 168 (1972), 121-132
- MSC: Primary 58B05
- DOI: https://doi.org/10.1090/S0002-9947-1972-0298712-3
- MathSciNet review: 0298712