Smooth extensions in infinite dimensional Banach spaces
Author:
Peter Renz
Journal:
Trans. Amer. Math. Soc. 168 (1972), 121-132
MSC:
Primary 58B05
DOI:
https://doi.org/10.1090/S0002-9947-1972-0298712-3
MathSciNet review:
0298712
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: If $B$ is ${l_p}(\omega )$ or ${c_0}(\omega )$ we show $B$ has the following extension property. Any homeomorphism from a compact subset $M$ of $B$ into $B$ may be extended to a homeomorphism of $B$ onto $B$ which is a ${C^\infty }$ diffeomorphism on $B\backslash M$ to its image in $B$. This is done by writing $B$ as a direct sum of closed subspaces ${B_1}$ and ${B_2}$ both isomorphically isometric to $B$ so that the natural projection of $K$ into ${B_1}$ along ${B_2}$ is one-to-one (see H. H. Corson, contribution in Symposium on infinite dimensional topology, Ann. of Math. Studies (to appear)). With $K,B,{B_1}$ and ${B_2}$ as above a homeomorphism of $B$ onto itself is constructed which leaves the ${B_1}$-coordinates of points in $B$ unchanged, carries $K$ into ${B_1}$ and is a ${C^\infty }$ diffeomorphic map on $B\backslash K$. From these results the extension theorem may be proved by standard methods.
- R. D. Anderson, On a theorem of Klee, Proc. Amer. Math. Soc. 17 (1966), 1401–1404. MR 205029, DOI https://doi.org/10.1090/S0002-9939-1966-0205029-4
- R. D. Anderson, Strongly negligible sets in Fréchet manifolds, Bull. Amer. Math. Soc. 75 (1969), 64–67. MR 238358, DOI https://doi.org/10.1090/S0002-9904-1969-12146-4
- C. Bessaga, Every infinite-dimensional Hilbert space is diffeomorphic with its unit sphere, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 14 (1966), 27–31 (English, with Russian summary). MR 193646 ---, Topics from infinite dimensional topology, Lecture Notes Series No. 18, Matematisk Institut, Aarhus, 1969.
- Robert Bonic and John Frampton, Smooth functions on Banach manifolds, J. Math. Mech. 15 (1966), 877–898. MR 0198492 H. H. Corson, Thin sets in Fréchet spaces, Sympos. on Infinite Dimensional Topology (Baton Rouge, 1967), Ann. of Math. Studies, Princeton Univ. Press, Princeton, N. J., 1971.
- William H. Cutler, Negligible subsets of infinite-dimensional Fréchet manifolds, Proc. Amer. Math. Soc. 23 (1969), 668–675. MR 248883, DOI https://doi.org/10.1090/S0002-9939-1969-0248883-5
- J. Dieudonné, Foundations of modern analysis, Pure and Applied Mathematics, Vol. X, Academic Press, New York-London, 1960. MR 0120319
- B. S. Mitjagin, The homotopy structure of a linear group of a Banach space, Uspehi Mat. Nauk 25 (1970), no. 5(155), 63–106 (Russian). MR 0341523
- J. Eells and K. D. Elworthy, Open embeddings of certain Banach manifolds, Ann. of Math. (2) 91 (1970), 465–485. MR 263120, DOI https://doi.org/10.2307/1970634
- James Eells Jr. and Nicolaas H. Kuiper, Homotopy negligible subsets, Compositio Math. 21 (1969), 155–161. MR 253331
- Victor L. Klee Jr., Convex bodies and periodic homeomorphisms in Hilbert space, Trans. Amer. Math. Soc. 74 (1953), 10–43. MR 54850, DOI https://doi.org/10.1090/S0002-9947-1953-0054850-X
- Nicolaas H. Kuiper, The homotopy type of the unitary group of Hilbert space, Topology 3 (1965), 19–30. MR 179792, DOI https://doi.org/10.1016/0040-9383%2865%2990067-4
- Dan Burghelea and Nicolaas H. Kuiper, Hilbert manifolds, Ann. of Math. (2) 90 (1969), 379–417. MR 253374, DOI https://doi.org/10.2307/1970743
- Serge Lang, Introduction to differentiable manifolds, Interscience Publishers (a division of John Wiley & Sons, Inc.), New York-London, 1962. MR 0155257
- Phillip A. Martens, Representations of infinite dimensional manifolds and $\infty -p$ homology functors, Bull. Amer. Math. Soc. 76 (1970), 641–645. MR 261634, DOI https://doi.org/10.1090/S0002-9904-1970-12471-5
- Nicole Moulis, Sur les variétés Hilbertiennes et les fonctions non dégénérées, Nederl. Akad. Wetensch. Proc. Ser. A 71 = Indag. Math. 30 (1968), 497–511 (French). MR 0254876
- Gerhard Neubauer, Der Homotopietyp der Automorphismengruppe in den Räumen $l_{p}$ und $c_{0}$, Math. Ann. 174 (1967), 33–40 (German). MR 219088, DOI https://doi.org/10.1007/BF01363121 P. Renz, Smooth extensions and extractions in Banach spaces, Notices Amer. Math. Soc. 16 (1969), 557. Abstract #666-21. ---, Smooth extensions and smooth extractions, Thesis, University of Washington, Seattle, Wash., 1969.
Retrieve articles in Transactions of the American Mathematical Society with MSC: 58B05
Retrieve articles in all journals with MSC: 58B05
Additional Information
Keywords:
Extension of homeomorphisms,
infinite dimensional Banach spaces,
<!– MATH ${C^\infty }$ –> <IMG WIDTH="38" HEIGHT="20" ALIGN="BOTTOM" BORDER="0" SRC="images/img1.gif" ALT="${C^\infty }$"> extensions,
compact subsets of infinite dimensional spaces
Article copyright:
© Copyright 1972
American Mathematical Society