## On the H. Lewy extension phenomenon

HTML articles powered by AMS MathViewer

- by Ricardo Nirenberg PDF
- Trans. Amer. Math. Soc.
**168**(1972), 337-356 Request permission

## Abstract:

We prove local approximation and extension theorems for ${C^\infty }$ submanifolds $M$ of ${C^n}$ (CR submanifolds). Under some conditions on $M$, any smooth solution of the induced Cauchy-Riemann equations can be extended holomorphically to bigger (and sometimes open) sets.## References

- Aldo Andreotti and Hans Grauert,
*Théorème de finitude pour la cohomologie des espaces complexes*, Bull. Soc. Math. France**90**(1962), 193–259 (French). MR**150342**, DOI 10.24033/bsmf.1581 - Aldo Andreotti and Edoardo Vesentini,
*Carleman estimates for the Laplace-Beltrami equation on complex manifolds*, Inst. Hautes Études Sci. Publ. Math.**25**(1965), 81–130. MR**175148**, DOI 10.1007/BF02684398 - Errett Bishop,
*Differentiable manifolds in complex Euclidean space*, Duke Math. J.**32**(1965), 1–21. MR**200476** - S. J. Greenfield,
*Cauchy-Riemann equations in several variables*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3)**22**(1968), 275–314. MR**237816** - Stephen J. Greenfield,
*Upper bounds on the dimension of extendibility of submanifolds in $C^{n}$*, Proc. Amer. Math. Soc.**23**(1969), 185–189. MR**259175**, DOI 10.1090/S0002-9939-1969-0259175-2 - Lars Hörmander,
*$L^{2}$ estimates and existence theorems for the $\bar \partial$ operator*, Acta Math.**113**(1965), 89–152. MR**179443**, DOI 10.1007/BF02391775 - Lars Hörmander,
*An introduction to complex analysis in several variables*, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR**0203075** - J. J. Kohn and Hugo Rossi,
*On the extension of holomorphic functions from the boundary of a complex manifold*, Ann. of Math. (2)**81**(1965), 451–472. MR**177135**, DOI 10.2307/1970624 - Hans Lewy,
*On the local character of the solutions of an atypical linear differential equation in three variables and a related theorem for regular functions of two complex variables*, Ann. of Math. (2)**64**(1956), 514–522. MR**81952**, DOI 10.2307/1969599 - Hans Lewy,
*On hulls of holomorphy*, Comm. Pure Appl. Math.**13**(1960), 587–591. MR**150339**, DOI 10.1002/cpa.3160130403 - B. Malgrange,
*Ideals of differentiable functions*, Tata Institute of Fundamental Research Studies in Mathematics, vol. 3, Tata Institute of Fundamental Research, Bombay; Oxford University Press, London, 1967. MR**0212575** - Ricardo Nirenberg,
*Function algebras on a class of pseudoconvex submanifolds of $C^{n}$*, Boll. Un. Mat. Ital. (4)**3**(1970), 628–636 (English, with Italian summary). MR**0268408** - Ricardo Nirenberg and R. O. Wells Jr.,
*Approximation theorems on differentiable submanifolds of a complex manifold*, Trans. Amer. Math. Soc.**142**(1969), 15–35. MR**245834**, DOI 10.1090/S0002-9947-1969-0245834-9 - Hugo Rossi,
*Holomorphically convex sets in several complex variables*, Ann. of Math. (2)**74**(1961), 470–493. MR**133479**, DOI 10.2307/1970292 - I. G. Petrovskiĭ (ed.),
*Trudy mezhdunarodnogo kongressa matematikov (Moskva, 1966)*, Izdat. “Mir”, Moscow, 1968 (Russian). MR**0232636** - Giuseppe Tomassini,
*Tracce delle funzioni olomorfe sulle sottovarietà analitiche reali d’una varietà complessa*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3)**20**(1966), 31–43 (Italian). MR**206992**
B. Weinstock, - R. O. Wells Jr.,
*On the local holomorphic hull of a real submanifold in several complex variables*, Comm. Pure Appl. Math.**19**(1966), 145–165. MR**197785**, DOI 10.1002/cpa.3160190204 - R. O. Wells Jr.,
*Holomorphic hulls and holomorphic convexity*, Rice Univ. Stud.**54**(1968), no. 4, 75–84. MR**241690**

*On holomorphic extension from real submanifolds of complex Euclidean space*, Thesis, Massachusetts Institute of Technology, Cambridge, Mass., 1966.

## Additional Information

- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**168**(1972), 337-356 - MSC: Primary 32C35
- DOI: https://doi.org/10.1090/S0002-9947-1972-0301234-4
- MathSciNet review: 0301234