On the H. Lewy extension phenomenon
HTML articles powered by AMS MathViewer
- by Ricardo Nirenberg
- Trans. Amer. Math. Soc. 168 (1972), 337-356
- DOI: https://doi.org/10.1090/S0002-9947-1972-0301234-4
- PDF | Request permission
Abstract:
We prove local approximation and extension theorems for ${C^\infty }$ submanifolds $M$ of ${C^n}$ (CR submanifolds). Under some conditions on $M$, any smooth solution of the induced Cauchy-Riemann equations can be extended holomorphically to bigger (and sometimes open) sets.References
- Aldo Andreotti and Hans Grauert, Théorème de finitude pour la cohomologie des espaces complexes, Bull. Soc. Math. France 90 (1962), 193–259 (French). MR 150342, DOI 10.24033/bsmf.1581
- Aldo Andreotti and Edoardo Vesentini, Carleman estimates for the Laplace-Beltrami equation on complex manifolds, Inst. Hautes Études Sci. Publ. Math. 25 (1965), 81–130. MR 175148, DOI 10.1007/BF02684398
- Errett Bishop, Differentiable manifolds in complex Euclidean space, Duke Math. J. 32 (1965), 1–21. MR 200476
- S. J. Greenfield, Cauchy-Riemann equations in several variables, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 22 (1968), 275–314. MR 237816
- Stephen J. Greenfield, Upper bounds on the dimension of extendibility of submanifolds in $C^{n}$, Proc. Amer. Math. Soc. 23 (1969), 185–189. MR 259175, DOI 10.1090/S0002-9939-1969-0259175-2
- Lars Hörmander, $L^{2}$ estimates and existence theorems for the $\bar \partial$ operator, Acta Math. 113 (1965), 89–152. MR 179443, DOI 10.1007/BF02391775
- Lars Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR 0203075
- J. J. Kohn and Hugo Rossi, On the extension of holomorphic functions from the boundary of a complex manifold, Ann. of Math. (2) 81 (1965), 451–472. MR 177135, DOI 10.2307/1970624
- Hans Lewy, On the local character of the solutions of an atypical linear differential equation in three variables and a related theorem for regular functions of two complex variables, Ann. of Math. (2) 64 (1956), 514–522. MR 81952, DOI 10.2307/1969599
- Hans Lewy, On hulls of holomorphy, Comm. Pure Appl. Math. 13 (1960), 587–591. MR 150339, DOI 10.1002/cpa.3160130403
- B. Malgrange, Ideals of differentiable functions, Tata Institute of Fundamental Research Studies in Mathematics, vol. 3, Tata Institute of Fundamental Research, Bombay; Oxford University Press, London, 1967. MR 0212575
- Ricardo Nirenberg, Function algebras on a class of pseudoconvex submanifolds of $C^{n}$, Boll. Un. Mat. Ital. (4) 3 (1970), 628–636 (English, with Italian summary). MR 0268408
- Ricardo Nirenberg and R. O. Wells Jr., Approximation theorems on differentiable submanifolds of a complex manifold, Trans. Amer. Math. Soc. 142 (1969), 15–35. MR 245834, DOI 10.1090/S0002-9947-1969-0245834-9
- Hugo Rossi, Holomorphically convex sets in several complex variables, Ann. of Math. (2) 74 (1961), 470–493. MR 133479, DOI 10.2307/1970292
- I. G. Petrovskiĭ (ed.), Trudy mezhdunarodnogo kongressa matematikov (Moskva, 1966), Izdat. “Mir”, Moscow, 1968 (Russian). MR 0232636
- Giuseppe Tomassini, Tracce delle funzioni olomorfe sulle sottovarietà analitiche reali d’una varietà complessa, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 20 (1966), 31–43 (Italian). MR 206992 B. Weinstock, On holomorphic extension from real submanifolds of complex Euclidean space, Thesis, Massachusetts Institute of Technology, Cambridge, Mass., 1966.
- R. O. Wells Jr., On the local holomorphic hull of a real submanifold in several complex variables, Comm. Pure Appl. Math. 19 (1966), 145–165. MR 197785, DOI 10.1002/cpa.3160190204
- R. O. Wells Jr., Holomorphic hulls and holomorphic convexity, Rice Univ. Stud. 54 (1968), no. 4, 75–84. MR 241690
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 168 (1972), 337-356
- MSC: Primary 32C35
- DOI: https://doi.org/10.1090/S0002-9947-1972-0301234-4
- MathSciNet review: 0301234