Approximation of strictly singular and strictly cosingular operators using nonstandard analysis
HTML articles powered by AMS MathViewer
- by J. W. Brace and R. Royce Kneece
- Trans. Amer. Math. Soc. 168 (1972), 483-496
- DOI: https://doi.org/10.1090/S0002-9947-1972-0636378-0
- PDF | Request permission
Abstract:
The strictly singular operators and the strictly cosingular operators are characterized by the manner in which they can be approximated by continuous linear operators of finite-dimensional range. We make use of linear convergence structures to obtain each class as limit points of the operators with finite-dimensional range. The construction of a nonstandard model makes it possible to replace convergence structures by topologies. Our nonstandard models are called nonstandard locally convex spaces.References
- John W. Brace, The topology of almost uniform convergence, Pacific J. Math. 9 (1959), 643–652. MR 109293, DOI 10.2140/pjm.1959.9.643
- John W. Brace, Approximating compact and weakly compact operators, Proc. Amer. Math. Soc. 12 (1961), 392–393. MR 130575, DOI 10.1090/S0002-9939-1961-0130575-7
- John W. Brace, Convergence on filters and simple equicontinuity, Illinois J. Math. 9 (1965), 286–296. MR 176438
- J. W. Brace and P. J. Richetta, The approximation of linear operators, Trans. Amer. Math. Soc. 157 (1971), 1–21. MR 278122, DOI 10.1090/S0002-9947-1971-0278122-4
- C. H. Cook and H. R. Fischer, Uniform convergence structures, Math. Ann. 173 (1967), 290–306. MR 217756, DOI 10.1007/BF01781969
- Nelson Dunford and Jacob T. Schwartz, Linear Operators. I. General Theory, Pure and Applied Mathematics, Vol. 7, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1958. With the assistance of W. G. Bade and R. G. Bartle. MR 0117523
- H. R. Fischer, Limesräume, Math. Ann. 137 (1959), 269–303 (German). MR 109339, DOI 10.1007/BF01360965
- Seymour Goldberg, Unbounded linear operators: Theory and applications, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0200692
- Richard H. Herman, Generalizations of weakly compact operators, Trans. Amer. Math. Soc. 132 (1968), 377–386. MR 223929, DOI 10.1090/S0002-9947-1968-0223929-2 J. Horváth, Topological vector spaces and distributions. Vol. 1, Addison-Wesley, Reading, Mass., 1966. MR 34 #4863.
- Tosio Kato, Perturbation theory for nullity, deficiency and other quantities of linear operators, J. Analyse Math. 6 (1958), 261–322. MR 107819, DOI 10.1007/BF02790238
- John L. Kelley, General topology, D. Van Nostrand Co., Inc., Toronto-New York-London, 1955. MR 0070144
- A. Pełczyński, On strictly singular and strictly cosingular operators. I. Strictly singular and strictly cosingular operators in $C(S)$-spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 13 (1965), 31–36. MR 177300
- Abraham Robinson, Non-standard analysis, North-Holland Publishing Co., Amsterdam, 1966. MR 0205854
- Abraham Robinson, Nonstandard arithmetic, Bull. Amer. Math. Soc. 73 (1967), 818–843. MR 218231, DOI 10.1090/S0002-9904-1967-11809-3
- Helmut H. Schaefer, Topological vector spaces, The Macmillan Company, New York; Collier Macmillan Ltd., London, 1966. MR 0193469
- François Trèves, Topological vector spaces, distributions and kernels, Academic Press, New York-London, 1967. MR 0225131
- Ju. N. Vladimirskiĭ, Strictly cosingular operators, Dokl. Akad. Nauk SSSR 174 (1967), 1251–1252 (Russian). MR 0216307
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 168 (1972), 483-496
- MSC: Primary 47D15; Secondary 02H25, 47B05
- DOI: https://doi.org/10.1090/S0002-9947-1972-0636378-0
- MathSciNet review: 0636378