A notion of capacity which characterizes removable singularities
HTML articles powered by AMS MathViewer
- by Reese Harvey and John C. Polking
- Trans. Amer. Math. Soc. 169 (1972), 183-195
- DOI: https://doi.org/10.1090/S0002-9947-1972-0306740-4
- PDF | Request permission
Abstract:
In this paper the authors define a capacity for a given linear partial differential operator acting on a Banach space of distributions. This notion has as special cases Newtonian capacity, analytic capacity, and AC capacity. It is shown that the sets of capacity zero are precisely those sets which are removable sets for the corresponding homogeneous equation. Simple properties of the capacity are derived and special cases examined.References
- David R. Adams and John C. Polking, The equivalence of two definitions of capacity, Proc. Amer. Math. Soc. 37 (1973), 529–534. MR 328109, DOI 10.1090/S0002-9939-1973-0328109-5
- Lars V. Ahlfors, Bounded analytic functions, Duke Math. J. 14 (1947), 1–11. MR 21108
- D. G. Aronson, Removable singularities for linear parabolic equations, Arch. Rational Mech. Anal. 17 (1964), 79–84. MR 177206, DOI 10.1007/BF00283868
- Lennart Carleson, Selected problems on exceptional sets, Van Nostrand Mathematical Studies, No. 13, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR 0225986
- E. B. Fabes and N. M. Rivière, Singular integrals with mixed homogeneity, Studia Math. 27 (1966), 19–38. MR 209787, DOI 10.4064/sm-27-1-19-38
- Bent Fuglede, Extremal length and functional completion, Acta Math. 98 (1957), 171–219. MR 97720, DOI 10.1007/BF02404474 —, Applications du théorème minimax à l’étude diverse capacités, C. R. Acad. Sci. Paris 266 (1968), 921-923.
- P. R. Garabedian, Schwarz’s lemma and the Szegö kernel function, Trans. Amer. Math. Soc. 67 (1949), 1–35. MR 32747, DOI 10.1090/S0002-9947-1949-0032747-8
- Reese Harvey and John Polking, Removable singularities of solutions of linear partial differential equations, Acta Math. 125 (1970), 39–56. MR 279461, DOI 10.1007/BF02838327 L. Hörmander, Linear partial differential operators, Die Grundlehren der math. Wissenschaften, Band 116, Academic Press, New York; Springer-Verlag, New York, 1963. MR 28 #4221.
- Norman G. Meyers, A theory of capacities for potentials of functions in Lebesgue classes, Math. Scand. 26 (1970), 255–292 (1971). MR 277741, DOI 10.7146/math.scand.a-10981 J. C. Polking, Uniform approximation of nowhere dense sets by solutions of elliptic equations (in preparation).
- Ju. G. Rešetnjak, The concept of capacity in the theory of functions with generalized derivatives, Sibirsk. Mat. Ž. 10 (1969), 1109–1138 (Russian). MR 0276487
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 169 (1972), 183-195
- MSC: Primary 35Q99; Secondary 31C15
- DOI: https://doi.org/10.1090/S0002-9947-1972-0306740-4
- MathSciNet review: 0306740