## A notion of capacity which characterizes removable singularities

HTML articles powered by AMS MathViewer

- by Reese Harvey and John C. Polking PDF
- Trans. Amer. Math. Soc.
**169**(1972), 183-195 Request permission

## Abstract:

In this paper the authors define a capacity for a given linear partial differential operator acting on a Banach space of distributions. This notion has as special cases Newtonian capacity, analytic capacity, and*AC*capacity. It is shown that the sets of capacity zero are precisely those sets which are removable sets for the corresponding homogeneous equation. Simple properties of the capacity are derived and special cases examined.

## References

- David R. Adams and John C. Polking,
*The equivalence of two definitions of capacity*, Proc. Amer. Math. Soc.**37**(1973), 529–534. MR**328109**, DOI 10.1090/S0002-9939-1973-0328109-5 - Lars V. Ahlfors,
*Bounded analytic functions*, Duke Math. J.**14**(1947), 1–11. MR**21108** - D. G. Aronson,
*Removable singularities for linear parabolic equations*, Arch. Rational Mech. Anal.**17**(1964), 79–84. MR**177206**, DOI 10.1007/BF00283868 - Lennart Carleson,
*Selected problems on exceptional sets*, Van Nostrand Mathematical Studies, No. 13, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1967. MR**0225986** - E. B. Fabes and N. M. Rivière,
*Singular integrals with mixed homogeneity*, Studia Math.**27**(1966), 19–38. MR**209787**, DOI 10.4064/sm-27-1-19-38 - Bent Fuglede,
*Extremal length and functional completion*, Acta Math.**98**(1957), 171–219. MR**97720**, DOI 10.1007/BF02404474
—, - P. R. Garabedian,
*Schwarz’s lemma and the Szegö kernel function*, Trans. Amer. Math. Soc.**67**(1949), 1–35. MR**32747**, DOI 10.1090/S0002-9947-1949-0032747-8 - Reese Harvey and John Polking,
*Removable singularities of solutions of linear partial differential equations*, Acta Math.**125**(1970), 39–56. MR**279461**, DOI 10.1007/BF02838327
L. Hörmander, - Norman G. Meyers,
*A theory of capacities for potentials of functions in Lebesgue classes*, Math. Scand.**26**(1970), 255–292 (1971). MR**277741**, DOI 10.7146/math.scand.a-10981
J. C. Polking, - Ju. G. Rešetnjak,
*The concept of capacity in the theory of functions with generalized derivatives*, Sibirsk. Mat. Ž.**10**(1969), 1109–1138 (Russian). MR**0276487**

*Applications du théorème minimax à l’étude diverse capacités*, C. R. Acad. Sci. Paris

**266**(1968), 921-923.

*Linear partial differential operators*, Die Grundlehren der math. Wissenschaften, Band 116, Academic Press, New York; Springer-Verlag, New York, 1963. MR

**28**#4221.

*Uniform approximation of nowhere dense sets by solutions of elliptic equations*(in preparation).

## Additional Information

- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**169**(1972), 183-195 - MSC: Primary 35Q99; Secondary 31C15
- DOI: https://doi.org/10.1090/S0002-9947-1972-0306740-4
- MathSciNet review: 0306740