## A sheaf-theoretic duality theory for cylindric algebras

HTML articles powered by AMS MathViewer

- by Stephen D. Comer PDF
- Trans. Amer. Math. Soc.
**169**(1972), 75-87 Request permission

## Abstract:

Stone’s duality between Boolean algebras and Boolean spaces is extended to a dual equivalence between the category of all $\alpha$-dimensional cylindric algebras and a certain category of sheaves of such algebras. The dual spaces of important types of algebras are characterized and applications are given to the study of direct and subdirect decompositions of cylindric algebras.## References

- Stephen D. Comer,
*Representations by algebras of sections over Boolean spaces*, Pacific J. Math.**38**(1971), 29–38. MR**304277**, DOI 10.2140/pjm.1971.38.29 - William Hanf,
*On some fundamental problems concerning isomorphism of Boolean algebras*, Math. Scand.**5**(1957), 205–217. MR**108451**, DOI 10.7146/math.scand.a-10496
L. Henkin, D. Monk and A. Tarski, - Leon Henkin and Alfred Tarski,
*Cylindric algebras*, Proc. Sympos. Pure Math., Vol. II, American Mathematical Society, Providence, R.I., 1961, pp. 83–113. MR**0124250** - Bjarni Jónsson,
*On isomorphism types of groups and other algebraic systems*, Math. Scand.**5**(1957), 224–229. MR**108453**, DOI 10.7146/math.scand.a-10498 - R. S. Pierce,
*Modules over commutative regular rings*, Memoirs of the American Mathematical Society, No. 70, American Mathematical Society, Providence, R.I., 1967. MR**0217056**

*Cylindric algebras*, I, North-Holland, Amsterdam, 1971.

## Additional Information

- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**169**(1972), 75-87 - MSC: Primary 02J15; Secondary 55B30
- DOI: https://doi.org/10.1090/S0002-9947-1972-0307908-3
- MathSciNet review: 0307908