Ascent, descent, and commuting perturbations
HTML articles powered by AMS MathViewer
- by M. A. Kaashoek and D. C. Lay
- Trans. Amer. Math. Soc. 169 (1972), 35-47
- DOI: https://doi.org/10.1090/S0002-9947-1972-0312299-8
- PDF | Request permission
Abstract:
In the present paper we investigate the stability of the ascent and descent of a linear operator $T$ when $T$ is subjected to a perturbation by a linear operator $C$ which commutes with $T$. The domains and ranges of $T$ and $C$ lie in some linear space $X$. The results are used to characterize the Browder essential spectrum of $T$. We conclude with a number of remarks concerning the notion of commutativity used in the present paper.References
- Felix E. Browder, On the spectral theory of elliptic differential operators. I, Math. Ann. 142 (1960/61), 22–130. MR 209909, DOI 10.1007/BF01343363
- S. R. Caradus, Commutation properties of operator polynomials, J. Austral. Math. Soc. 12 (1971), 98–100. MR 0279615, DOI 10.1017/S1446788700008363
- I. C. Gohberg and M. G. Kreĭn, The basic propositions on defect numbers, root numbers and indices of linear operators, Amer. Math. Soc. Transl. (2) 13 (1960), 185–264. MR 0113146, DOI 10.1090/trans2/013/08
- Seymour Goldberg, Unbounded linear operators: Theory and applications, McGraw-Hill Book Co., New York-Toronto-London, 1966. MR 0200692
- K. Gustafson and J. Weidmann, On the essential spectrum, J. Math. Anal. Appl. 25 (1969), 121–127. MR 242004, DOI 10.1016/0022-247X(69)90217-0
- Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society Colloquium Publications, Vol. 31, American Mathematical Society, Providence, R.I., 1957. rev. ed. MR 0089373
- M. A. Kaashoek, Ascent, descent, nullity and defect: A note on a paper by A. E. Taylor, Math. Ann. 172 (1967), 105–115. MR 222669, DOI 10.1007/BF01350090
- M. A. Kaashoek, On the Riesz set of a linear operator, Nederl. Akad. Wetensch. Proc. Ser. A 71=Indag. Math. 30 (1968), 46–53. MR 0226435, DOI 10.1016/S1385-7258(68)50006-4
- David Lay, Characterizations of the essential spectrum of F. E. Browder, Bull. Amer. Math. Soc. 74 (1968), 246–248. MR 221318, DOI 10.1090/S0002-9904-1968-11905-6
- David C. Lay, Spectral analysis using ascent, descent, nullity and defect, Math. Ann. 184 (1969/70), 197–214. MR 259644, DOI 10.1007/BF01351564
- I. S. Murphy, Non-compact operators that act compactly on their centralisers, Bull. London Math. Soc. 2 (1970), 307–312. MR 282232, DOI 10.1112/blms/2.3.307
- Eric A. Nordgren, Closed operators commuting with a weighted shift, Proc. Amer. Math. Soc. 24 (1970), 424–428. MR 257786, DOI 10.1090/S0002-9939-1970-0257786-X
- Roger D. Nussbaum, Spectral mapping theorems and perturbation theorems for Browder’s essential spectrum, Trans. Amer. Math. Soc. 150 (1970), 445–455. MR 265967, DOI 10.1090/S0002-9947-1970-0265967-9
- Martin Schechter, On the essential spectrum of an arbitrary operator. I, J. Math. Anal. Appl. 13 (1966), 205–215. MR 188798, DOI 10.1016/0022-247X(66)90085-0
- Martin Schechter, On perturbations of essential spectra, J. London Math. Soc. (2) 1 (1969), 343–347. MR 248557, DOI 10.1112/jlms/s2-1.1.343
- Angus E. Taylor, Theorems on ascent, descent, nullity and defect of linear operators, Math. Ann. 163 (1966), 18–49. MR 190759, DOI 10.1007/BF02052483
- Kenneth K. Warner, The spectrum of a linear operator under perturbation by certain compact operators, Proc. Amer. Math. Soc. 22 (1969), 667–671. MR 246157, DOI 10.1090/S0002-9939-1969-0246157-X
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 169 (1972), 35-47
- MSC: Primary 47A55
- DOI: https://doi.org/10.1090/S0002-9947-1972-0312299-8
- MathSciNet review: 0312299