## Lattice-ordered injective hulls

HTML articles powered by AMS MathViewer

- by Stuart A. Steinberg PDF
- Trans. Amer. Math. Soc.
**169**(1972), 365-388 Request permission

## Abstract:

It is well known that the injective hull of a lattice-ordered group ($l$-group) $M$ can be given a lattice order in a unique way so that it becomes an $l$-group extension of $M$. This is not the case for an arbitrary $f$-module over a partially ordered ring (po-ring). The fact that it is the case for any $l$-group is used extensively to get deep theorems in the theory of $l$-groups. For instance, it is used in the proof of the Hahn-embedding theorem and in the characterization of ${\aleph _a}$-injective $l$-groups. In this paper we give a necessary and sufficient condition on the injective hull of a torsion-free $f$-module $M$ (over a directed essentially positive po-ring) for it to be made into an $f$-module extension of $M$ (in a unique way). An $f$-module is called an $i - f$-module if its injective hull can be made into an $f$-module extension. The class of torsion-free $i - f$-modules is closed under the formation of products, sums, and Hahn products of strict $f$-modules. Also, an $l$-submodule and a torsion-free homomorphic image of a torsion-free $i - f$-module are $i - f$-modules. Let $R$ be an $f$-ring with zero right singular ideal whose Boolean algebra of polars is atomic. We show that $R$ is a $qf$-ring (i.e., ${R_R}$ is an $i - f$-module) if and only if each torsion-free $R - f$-module is an $i - f$-module. There are no injectives in the category of torsion-free $R - f$-modules, but there are ${\aleph _a}$-injectives. These may be characterized as the $f$-modules that are injective $R$-modules and ${\aleph _a}$-injective $l$-groups. In addition, each torsion-free $f$-module over $R$ can be embedded in a Hahn product of $l$-simple $Q(R) - f$-modules. We note, too, that a totally ordered domain has an $i - f$-module if and only if it is a right Ore domain.## References

- F. W. Anderson,
*Lattice-ordered rings of quotients*, Canadian J. Math.**17**(1965), 434–448. MR**174600**, DOI 10.4153/CJM-1965-044-7 - Garrett Birkhoff and R. S. Pierce,
*Lattice-ordered rings*, An. Acad. Brasil. Ci.**28**(1956), 41–69. MR**80099** - Henri Cartan and Samuel Eilenberg,
*Homological algebra*, Princeton University Press, Princeton, N. J., 1956. MR**0077480** - Paul Conrad,
*Some structure theorems for lattice-ordered groups*, Trans. Amer. Math. Soc.**99**(1961), 212–240. MR**121405**, DOI 10.1090/S0002-9947-1961-0121405-2 - Paul Conrad,
*The lattice of all convex $l$-subgroups of a lattice-ordered group*, Czechoslovak Math. J.**15(90)**(1965), 101–123 (English, with Russian summary). MR**173716**, DOI 10.21136/CMJ.1965.100656 - P. F. Conrad and J. E. Diem,
*The ring of polar preserving endomorphisms of an abelian lattice-ordered group*, Illinois J. Math.**15**(1971), 222–240. MR**285462**, DOI 10.1215/ijm/1256052710 - Paul Conrad, John Harvey, and Charles Holland,
*The Hahn embedding theorem for abelian lattice-ordered groups*, Trans. Amer. Math. Soc.**108**(1963), 143–169. MR**151534**, DOI 10.1090/S0002-9947-1963-0151534-0 - J. E. Diem,
*A radical for lattice-ordered rings*, Pacific J. Math.**25**(1968), 71–82. MR**227068**, DOI 10.2140/pjm.1968.25.71 - B. Eckmann and A. Schopf,
*Über injektive Moduln*, Arch. Math. (Basel)**4**(1953), 75–78 (German). MR**55978**, DOI 10.1007/BF01899665 - Carl Faith,
*Lectures on injective modules and quotient rings*, Lecture Notes in Mathematics, No. 49, Springer-Verlag, Berlin-New York, 1967. MR**0227206**, DOI 10.1007/BFb0074319 - László Fuchs,
*Teilweise geordnete algebraische Strukturen*, Studia Mathematica/Mathematische Lehrbücher, Band XIX, Vandenhoeck & Ruprecht, Göttingen, 1966 (German). Übersetzt aus dem Englischen von Éva Vas. MR**0204547**
A. W. Goldie, - A. W. Goldie,
*Torsion-free modules and rings*, J. Algebra**1**(1964), 268–287. MR**164991**, DOI 10.1016/0021-8693(64)90023-7 - Paul Jaffard,
*Les systèmes d’idéaux*, Travaux et Recherches Mathématiques, IV, Dunod, Paris, 1960 (French). MR**0114810** - D. G. Johnson,
*A structure theory for a class of lattice-ordered rings*, Acta Math.**104**(1960), 163–215. MR**125141**, DOI 10.1007/BF02546389 - D. G. Johnson and J. E. Kist,
*Prime ideals in vector lattices*, Canadian J. Math.**14**(1962), 517–528. MR**138566**, DOI 10.4153/CJM-1962-043-3 - R. E. Johnson,
*The extended centralizer of a ring over a module*, Proc. Amer. Math. Soc.**2**(1951), 891–895. MR**45695**, DOI 10.1090/S0002-9939-1951-0045695-9 - Lawrence Levy,
*Unique subdirect sums of prime rings*, Trans. Amer. Math. Soc.**106**(1963), 64–76. MR**142567**, DOI 10.1090/S0002-9947-1963-0142567-9 - P. Ribenboim,
*On ordered modules*, J. Reine Angew. Math.**225**(1967), 120–146. MR**206052**, DOI 10.1515/crll.1967.225.120 - Stuart A. Steinberg,
*Finitely-valued $f$-modules*, Pacific J. Math.**40**(1972), 723–737. MR**306078**, DOI 10.2140/pjm.1972.40.723
—, - Yuzo Utumi,
*On quotient rings*, Osaka Math. J.**8**(1956), 1–18. MR**78966** - Diana Yun-dee Wei,
*On the concept of torsion and divisibility for general rings*, Illinois J. Math.**13**(1969), 414–431. MR**241467**
E. C. Weinberg,

*Rings with maximum condition*, Lecture Notes, Yale University, New Haven, Conn., 1964.

*Lattice-ordered rings and modules*, Dissertation, University of Illinois, Urbana, Ill., 1970.

*Lectures on ordered groups and rings*, Lecture Notes, University of Illinois, Urbana, Ill., 1968. —,

*Relative injectives and universals for categories of ordered structures*, Trans. Amer. Math. Soc. (to appear).

## Additional Information

- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**169**(1972), 365-388 - MSC: Primary 06A55
- DOI: https://doi.org/10.1090/S0002-9947-1972-0313158-7
- MathSciNet review: 0313158