Lattice-ordered injective hulls
HTML articles powered by AMS MathViewer
- by Stuart A. Steinberg
- Trans. Amer. Math. Soc. 169 (1972), 365-388
- DOI: https://doi.org/10.1090/S0002-9947-1972-0313158-7
- PDF | Request permission
Abstract:
It is well known that the injective hull of a lattice-ordered group ($l$-group) $M$ can be given a lattice order in a unique way so that it becomes an $l$-group extension of $M$. This is not the case for an arbitrary $f$-module over a partially ordered ring (po-ring). The fact that it is the case for any $l$-group is used extensively to get deep theorems in the theory of $l$-groups. For instance, it is used in the proof of the Hahn-embedding theorem and in the characterization of ${\aleph _a}$-injective $l$-groups. In this paper we give a necessary and sufficient condition on the injective hull of a torsion-free $f$-module $M$ (over a directed essentially positive po-ring) for it to be made into an $f$-module extension of $M$ (in a unique way). An $f$-module is called an $i - f$-module if its injective hull can be made into an $f$-module extension. The class of torsion-free $i - f$-modules is closed under the formation of products, sums, and Hahn products of strict $f$-modules. Also, an $l$-submodule and a torsion-free homomorphic image of a torsion-free $i - f$-module are $i - f$-modules. Let $R$ be an $f$-ring with zero right singular ideal whose Boolean algebra of polars is atomic. We show that $R$ is a $qf$-ring (i.e., ${R_R}$ is an $i - f$-module) if and only if each torsion-free $R - f$-module is an $i - f$-module. There are no injectives in the category of torsion-free $R - f$-modules, but there are ${\aleph _a}$-injectives. These may be characterized as the $f$-modules that are injective $R$-modules and ${\aleph _a}$-injective $l$-groups. In addition, each torsion-free $f$-module over $R$ can be embedded in a Hahn product of $l$-simple $Q(R) - f$-modules. We note, too, that a totally ordered domain has an $i - f$-module if and only if it is a right Ore domain.References
- F. W. Anderson, Lattice-ordered rings of quotients, Canadian J. Math. 17 (1965), 434–448. MR 174600, DOI 10.4153/CJM-1965-044-7
- Garrett Birkhoff and R. S. Pierce, Lattice-ordered rings, An. Acad. Brasil. Ci. 28 (1956), 41–69. MR 80099
- Henri Cartan and Samuel Eilenberg, Homological algebra, Princeton University Press, Princeton, N. J., 1956. MR 0077480
- Paul Conrad, Some structure theorems for lattice-ordered groups, Trans. Amer. Math. Soc. 99 (1961), 212–240. MR 121405, DOI 10.1090/S0002-9947-1961-0121405-2
- Paul Conrad, The lattice of all convex $l$-subgroups of a lattice-ordered group, Czechoslovak Math. J. 15(90) (1965), 101–123 (English, with Russian summary). MR 173716, DOI 10.21136/CMJ.1965.100656
- P. F. Conrad and J. E. Diem, The ring of polar preserving endomorphisms of an abelian lattice-ordered group, Illinois J. Math. 15 (1971), 222–240. MR 285462, DOI 10.1215/ijm/1256052710
- Paul Conrad, John Harvey, and Charles Holland, The Hahn embedding theorem for abelian lattice-ordered groups, Trans. Amer. Math. Soc. 108 (1963), 143–169. MR 151534, DOI 10.1090/S0002-9947-1963-0151534-0
- J. E. Diem, A radical for lattice-ordered rings, Pacific J. Math. 25 (1968), 71–82. MR 227068, DOI 10.2140/pjm.1968.25.71
- B. Eckmann and A. Schopf, Über injektive Moduln, Arch. Math. (Basel) 4 (1953), 75–78 (German). MR 55978, DOI 10.1007/BF01899665
- Carl Faith, Lectures on injective modules and quotient rings, Lecture Notes in Mathematics, No. 49, Springer-Verlag, Berlin-New York, 1967. MR 0227206, DOI 10.1007/BFb0074319
- László Fuchs, Teilweise geordnete algebraische Strukturen, Studia Mathematica/Mathematische Lehrbücher, Band XIX, Vandenhoeck & Ruprecht, Göttingen, 1966 (German). Übersetzt aus dem Englischen von Éva Vas. MR 0204547 A. W. Goldie, Rings with maximum condition, Lecture Notes, Yale University, New Haven, Conn., 1964.
- A. W. Goldie, Torsion-free modules and rings, J. Algebra 1 (1964), 268–287. MR 164991, DOI 10.1016/0021-8693(64)90023-7
- Paul Jaffard, Les systèmes d’idéaux, Travaux et Recherches Mathématiques, IV, Dunod, Paris, 1960 (French). MR 0114810
- D. G. Johnson, A structure theory for a class of lattice-ordered rings, Acta Math. 104 (1960), 163–215. MR 125141, DOI 10.1007/BF02546389
- D. G. Johnson and J. E. Kist, Prime ideals in vector lattices, Canadian J. Math. 14 (1962), 517–528. MR 138566, DOI 10.4153/CJM-1962-043-3
- R. E. Johnson, The extended centralizer of a ring over a module, Proc. Amer. Math. Soc. 2 (1951), 891–895. MR 45695, DOI 10.1090/S0002-9939-1951-0045695-9
- Lawrence Levy, Unique subdirect sums of prime rings, Trans. Amer. Math. Soc. 106 (1963), 64–76. MR 142567, DOI 10.1090/S0002-9947-1963-0142567-9
- P. Ribenboim, On ordered modules, J. Reine Angew. Math. 225 (1967), 120–146. MR 206052, DOI 10.1515/crll.1967.225.120
- Stuart A. Steinberg, Finitely-valued $f$-modules, Pacific J. Math. 40 (1972), 723–737. MR 306078, DOI 10.2140/pjm.1972.40.723 —, Lattice-ordered rings and modules, Dissertation, University of Illinois, Urbana, Ill., 1970.
- Yuzo Utumi, On quotient rings, Osaka Math. J. 8 (1956), 1–18. MR 78966
- Diana Yun-dee Wei, On the concept of torsion and divisibility for general rings, Illinois J. Math. 13 (1969), 414–431. MR 241467 E. C. Weinberg, Lectures on ordered groups and rings, Lecture Notes, University of Illinois, Urbana, Ill., 1968. —, Relative injectives and universals for categories of ordered structures, Trans. Amer. Math. Soc. (to appear).
Bibliographic Information
- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc. 169 (1972), 365-388
- MSC: Primary 06A55
- DOI: https://doi.org/10.1090/S0002-9947-1972-0313158-7
- MathSciNet review: 0313158