## Plurisubharmonic functions and convexity properties for general function algebras

HTML articles powered by AMS MathViewer

- by C. E. Rickart PDF
- Trans. Amer. Math. Soc.
**169**(1972), 1-24 Request permission

## Abstract:

A â€śnatural systemâ€ť consists of a Hausdorff space $\Sigma$ plus an algebra $\mathfrak {A}$ of complex-valued continuous functions on $\Sigma$ (which contains the constants and determines the topology in $\Sigma$) such that every continuous homomorphism of $\mathfrak {A}$ onto ${\mathbf {C}}$ is given by an evaluation at a point of $\Sigma$ (compact-open topology in $\mathfrak {A}$). The prototype of a natural system is $[{{\mathbf {C}}^n},\mathfrak {P}]$, where $\mathfrak {P}$ is the algebra of polynomials on ${{\mathbf {C}}^n}$. In earlier papers (Pacific J. Math.**18**and Canad. J. Math. 20), the author studied $\mathfrak {A}$-holomorphic functions, which are generalizations of ordinary holomorphic functions in ${{\mathbf {C}}^n}$, and associated concepts of $\mathfrak {A}$-analytic variety and $\mathfrak {A}$-holomorphic convexity in $\Sigma$. In the present paper, a class of extended real-valued functions, called $\mathfrak {A}$-subharmonic functions, is introduced which generalizes the ordinary plurisubharmonic functions in ${{\mathbf {C}}^n}$. These functions enjoy many of the properties associated with plurisubharmonic functions. Furthermore, in terms of the $\mathfrak {A}$-subharmonic functions, a number of convexity properties of ${{\mathbf {C}}^n}$ associated with plurisubharmonic functions can be generalized. For example, if $G$ is an open $\mathfrak {A}$-holomorphically convex subset of $\Sigma$ and $K$ is a compact subset of $G$, then the convex hull of $K$ with respect to the continuous $\mathfrak {A}$-subharmonic functions on $G$ is equal to its hull with respect to the $\mathfrak {A}$-holomorphic functions on $G$.

## References

- Salomon Bochner and William Ted Martin,
*Several Complex Variables*, Princeton Mathematical Series, vol. 10, Princeton University Press, Princeton, N. J., 1948. MR**0027863** - H. J. Bremermann,
*On the conjecture of the equivalence of the plurisubharmonic functions and the Hartogs functions*, Math. Ann.**131**(1956), 76â€“86. MR**77644**, DOI 10.1007/BF01354666 - B. A. Fuks,
*Spetsialâ€˛nye glavy teorii analiticheskikh funktsiÄ mnogikh kompleksnykh peremennykh*, Gosudarstv. Izdat. Fiz.-Mat. Lit., Moscow, 1963 (Russian). MR**0174786** - Robert C. Gunning and Hugo Rossi,
*Analytic functions of several complex variables*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1965. MR**0180696**
F. Hausdorff, - Lars HĂ¶rmander,
*An introduction to complex analysis in several variables*, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto, Ont.-London, 1966. MR**0203075** - P. Lelong,
*Les fonctions plurisousharmoniques*, Ann. Sci. Ă‰cole Norm. Sup. (3)**62**(1945), 301â€“338 (French). MR**0018304**, DOI 10.24033/asens.927 - P. Lelong,
*Fonctions plurisousharmoniques et formes diffĂ©rentielles positives*, Gordon & Breach, Paris-London-New York; distributed by Dunod Ă‰diteur, Paris, 1968 (French). MR**0243112** - Charles E. Rickart,
*General theory of Banach algebras*, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR**0115101** - C. E. Rickart,
*Analytic phenomena in general function algebras*, Pacific J. Math.**18**(1966), 361â€“377. MR**198279**, DOI 10.2140/pjm.1966.18.361 - C. E. Rickart,
*Holomorphic convexity for general function algebras*, Canadian J. Math.**20**(1968), 272â€“290. MR**227778**, DOI 10.4153/CJM-1968-027-2 - C. E. Rickart,
*Analytic functions of an infinite number of complex variables*, Duke Math. J.**36**(1969), 581â€“597. MR**254611**, DOI 10.1215/S0012-7094-69-03670-9 - Hugo Rossi,
*The local maximum modulus principle*, Ann. of Math. (2)**72**(1960), 1â€“11. MR**117539**, DOI 10.2307/1970145 - Gabriel Stolzenberg,
*A hull with no analytic structure*, J. Math. Mech.**12**(1963), 103â€“111. MR**0143061**

*Mengenlehre*, de Gruyter, Berlin, 1937; English transl.,

*Set theory*, Chelsea, New York, 1957. MR

**19**, 111.

## Additional Information

- © Copyright 1972 American Mathematical Society
- Journal: Trans. Amer. Math. Soc.
**169**(1972), 1-24 - MSC: Primary 46J10; Secondary 32F05, 46G20
- DOI: https://doi.org/10.1090/S0002-9947-1972-0317055-2
- MathSciNet review: 0317055