ABSTRACT. In this paper strictly irreducible *-representations of Banach *-algebras and the positive functionals associated with these representations are studied.

Introduction. Let \(A \) be a Banach *-algebra, and let \(\alpha \rightarrow \pi(\alpha) \) be a representation of \(A \) on a Hilbert space \(\mathcal{H} \). A subspace \(K \subset \mathcal{H} \) is \(\pi \)-invariant if \(\pi(\alpha)K \subset K \) for every \(\alpha \in A \). The representation \(\pi \) is irreducible if \(\pi \) is nonzero and the only closed \(\pi \)-invariant subspaces of \(\mathcal{H} \) are \(\mathcal{H} \) and \(\{0\} \). \(\pi \) is strictly irreducible if \(\pi \) is nonzero and the only \(\pi \)-invariant subspaces of \(\mathcal{H} \) are \(\mathcal{H} \) and \(\{0\} \). In the case where \(A \) is a \(B^* \)-algebra, R. V. Kadison proved the remarkable result that every irreducible *-representation of \(A \) is strictly irreducible [6, Theorem 1].

Aside from this theorem of Kadison, there are only a few minor isolated results concerning strictly irreducible *-representations of Banach *-algebras. In this paper we study strictly irreducible *-representations and certain positive functionals associated with these representations which we call strictly pure states (a positive functional \(\alpha \) on \(A \) is a strictly pure state if \(\alpha \) is a pure state and the *-representation of \(A \) determined by \(\alpha \) is strictly irreducible). We give necessary and sufficient conditions that a pure state of \(A \) be strictly pure in \(\S 2 \). In \(\S \S 3 \) and 4 some of the special properties of strictly pure states and strictly irreducible representations are presented. In \(\S 5 \) some examples of Banach *-algebras with the property that every irreducible *-representation is strictly irreducible are provided.

1. Notation and preliminaries. Throughout this paper \(A \) denotes a Banach *-algebra. A linear functional \(\alpha \) on \(A \) is positive if \(\alpha(\alpha^*\alpha) \geq 0 \) for all \(\alpha \in A \). When \(\alpha \) is a positive functional on \(A \), let

\[
M(\alpha) = \sup \left\{ \frac{|\alpha(a)|^2}{\alpha(a^*a)} \middle| a \in A, \ \alpha(a^*a) \neq 0 \right\}.
\]

Received by the editors July 12, 1971.

AMS 1970 subject classifications. Primary 46K10, 46H05.

Key words and phrases. Strictly irreducible *-representations, pure states.

(1) This research was partially supported by NSF grant GP-20226.

Copyright © 1972, American Mathematical Society
The set of all positive functionals α on A with the properties $\alpha(a^*) = \overline{\alpha(a)}$ for all $a \in A$ and $M(\alpha) < +\infty$, we denote by \mathcal{P}. \mathcal{P}_1 is the set of all $\alpha \in \mathcal{P}$ with $M(\alpha) \leq 1$. Let A_h be the real linear space of hermitian elements of A. \mathcal{P}_1 is a convex subset of A_h^*, the dual space of A_h, and \mathcal{P}_1 is compact in the weak $*$-topology on A_h^* (see [4, Theorem (21.33), p. 328]). The extreme points of \mathcal{P}_1 are called pure states. For $\alpha \in \mathcal{P}$, the left kernel of α, denoted K_α, is the set of all $a \in A$ such that $\alpha(a^*a) = 0$. K_α is a closed left ideal of A. The quotient space $A - K_\alpha$ is a pre-Hilbert space in the inner-product $(a + K_\alpha, b + K_\alpha) = \alpha(b^*a)$. Let H_α denote the Hilbert space which is the completion of this pre-Hilbert space. A $*$-representation $\alpha \rightarrow \pi_\alpha(a)$ of A on H_α is constructed by first defining $\pi_\alpha(a)(b + K_\alpha) = ab + K_\alpha$ for $b + K_\alpha \in A - K_\alpha$. Then $\pi_\alpha(a)$ is a bounded operator on $A - K_\alpha$ which extends uniquely to a bounded operator on H_α (also denoted by $\pi_\alpha(a)$). For details of this construction see the proof of Theorem (21.24) in [4]. It is a well-known theorem that $\alpha \in \mathcal{P}$ is a pure state of A if and only if $M(\alpha) = 1$ and the $*$-representation π_α is irreducible on H_α [4, Theorem (21.34), p. 328]. We define $\alpha \in \mathcal{P}$ to be a strictly pure state of A if α is a pure state of A and $\alpha \rightarrow \pi_\alpha(a)$ is strictly irreducible on H_α.

When X is a normed linear space with norm $\| \cdot \|$ and Y is a closed subspace of X, then the quotient norm $\| \cdot \|_q$ on the quotient space $X - Y$ is defined as usual by

$$\|x + Y\|_q = \inf \{\|x - y\| : y \in Y\}.$$

H is always a Hilbert space and $B(H)$ is the algebra of all bounded operators on H.

2. Necessary and sufficient conditions for a pure state to be strictly pure.

When $\alpha \in \mathcal{P}$, the quotient space $A - K_\alpha$ is an inner product space with inner product defined by $(a + K_\alpha, b + K_\alpha) = \alpha(b^*a)$. Let $\|a + K_\alpha\|_2 = (\alpha(a^*a))^{1/2}$. We prove that a pure state α of A is strictly pure if and only if $A - K_\alpha$ is complete in the norm $\|a + K_\alpha\|_2$.

Theorem 2.1. Assume that A is a Banach $*$-algebra and that α is a pure state of A. Then α is a strictly pure state of A if and only if $A - K_\alpha$ is complete in the norm $\|a + K_\alpha\|_2 = \alpha(a^*a)^{1/2}$. Also when α is a strictly pure state of A, then K_α is a modular maximal left ideal of A.

Proof. Assume first that α is a strictly pure state of A. By the construction of H_α, $A - K_\alpha$ is an invariant subspace for $\pi_\alpha(a)$ whenever $a \in A$. Then $H_\alpha = A - K_\alpha$, so that $A - K_\alpha$ is complete in the norm $\|a + K_\alpha\|_2$.

Conversely assume that $A - K_\alpha$ is complete in this norm. We prove first that the two norms $\| \cdot \|_2$ and $\| \cdot \|_q$ are equivalent on $A - K_\alpha$. By the Closed Graph Theorem it suffices to prove that $\| \cdot \|_q$ dominates $\| \cdot \|_2$. This is exactly the same
as proving that the identity map \(a + K_\alpha \rightarrow a + K_\alpha \) is a continuous map from
\((A - K_\alpha, \| \cdot \|_q)\) onto \((A - K_\alpha, \| \cdot \|_q)\). Again using the Closed Graph Theorem, it
suffices to show that this map is closed. Therefore assume that \(\{a_n\} \subseteq A, a \in A, \)
\[\|a_n + K_\alpha\|_q \rightarrow 0, \quad \text{and} \quad \|a_n - a\|_q + \|K_\alpha\|_q \rightarrow 0. \]
Then there exists a sequence \(\{k_n\} \subseteq K_\alpha \) such that \(\|a_n + k_n\| \rightarrow 0. \) Therefore \(\|a^*a_n + a^*k_n\| \rightarrow 0, \) and this implies
\[\alpha(a^*a_n) = \alpha(a^*a_n + a^*k_n) \rightarrow 0. \] But also \(|\alpha(a^*(a_n - a))| = |(a_n - a + K_\alpha a + K_\alpha)| \)
\[\leq \|a_n - a\|_q + \|K_\alpha\|_q \rightarrow 0. \] Therefore \(\alpha(a^*a) = 0, \) so that \(a + K_\alpha = 0. \)

Now define a functional \(\overline{\alpha} \) on the Hilbert space \(H_\alpha = A - K_\alpha \) by \(\overline{\alpha}(a + K_\alpha) = \alpha(a). \) Since \(K_\alpha \) is contained in the null space of \(\overline{\alpha}, \) \(\overline{\alpha} \) is well defined. Also,
\[\|\overline{\alpha}\|^2 = \sup \left\{ \frac{|\alpha(a)|^2}{\alpha(a^*a)} \bigg| a \in A, \alpha(a^*a) \neq 0 \right\} = M(\alpha) = 1. \]
Since \(A - K_\alpha \) is a Hilbert space, there exists \(v \in A \) such that \(\overline{\alpha}(a + K_\alpha) = (a + K_\alpha, v + K_\alpha) = \alpha(v^*a) \) for all \(a \in A. \) Therefore \(\alpha(a) = \alpha(v^*a) \) for all \(a \in A. \)
Given any \(a \in A, \)
\[\alpha((a(1 - v))^*(a(1 - v))) = \alpha(a^*a(1 - v)) - \alpha(v^*a*a(1 - v)) = 0. \]
Therefore \(A(1 - v) \subseteq K_\alpha \) so that \(K_\alpha \) is a modular left ideal. Let \(K \) be a maximal left ideal of \(A \) such that \(K_\alpha \subseteq K. \) Set \(M = \{b + K_\alpha \} b \in K \}. \) \(M \) is a proper \(\pi_\alpha \)-invariant subspace of \(H_\alpha = A - K_\alpha. \) Furthermore \(M \) is \(| \cdot |_2 \)-closed. Therefore by the
result of the previous paragraph, \(M \) is \(| \cdot |_2 \)-closed. It follows that \(K_\alpha = K. \) Then since \(K_\alpha \) is a maximal modular left ideal of \(A, \) \(\pi_\alpha(A) \) acts strictly irreducibly on \(H_\alpha = A - K_\alpha. \)

Every Banach \(*\)-algebra \(A \) has an algebra pseudonorm called the Gelfand-
Naimark pseudonorm. We denote this pseudonorm by \(|a| \), \(a \in A. \) This pseudonorm
has the properties:

1. \(|a^*a| = |a|^2 \) for all \(a \in A. \)
2. \(|\alpha(a)| \leq M(\alpha)|a| \) whenever \(\alpha \in \mathcal{P}, a \in A. \)
3. The \(*\)-radical of \(A \) is the set of all \(a \in A \) such that \(|a| = 0. \) See [8, p.
226] for the details of these results. We prove next that a pure state \(\alpha \) of \(A \) is
strictly pure if and only if \(|a + K_\alpha|_q = \inf \{ |a + k| \mid k \in K_\alpha \} \) is a complete norm on
\(A - K_\alpha. \)

Theorem 2.2. Let \(| \cdot | \) denote the Gelfand-Naimark pseudonorm on \(A. \) Then
a pure state \(\alpha \) of \(A \) is strictly pure if and only if \(|a + K_\alpha|_q \) is a complete norm
on \(A - K_\alpha. \)

Proof. For convenience we assume in the proof that \(A \) is reduced (i.e. the
\(*\)-radical of \(A \) is 0). This assumption can be made with no loss of generality.
In this case \(| \cdot | \) is a norm on \(A \) with the \(B^* \)-property by (1) and (3) above. Let
\(B \) denote the \(B^* \)-algebra which is the completion of \(A \) in the norm \(| \cdot |. \) Let \(\alpha \)
be a pure state of A. By (2) above α is $| \cdot |$-continuous. Therefore α has a
unique extension $\tilde{\alpha}$ to B. It is easy to verify that $\tilde{\alpha}$ is a pure state of B.

Now assume that α is a strictly pure state of A. Let $\text{cl}(K_{\alpha})$ denote the
$| \cdot |$-closure of K_{α} in B. If $\text{cl}(K_{\alpha}) \neq K_{\alpha}$, then by [8, Theorem (4.9.8), p. 251]
there exists a pure state $\tilde{\beta}$ of B with $\text{cl}(K_{\alpha}) \subset K_{\tilde{\beta}}$ and $\tilde{\alpha} \neq \tilde{\beta}$. Let β be the
restriction of $\tilde{\beta}$ to A. $K_{\alpha} \subset K_{\beta}$ and therefore $K_{\alpha} = K_{\beta}$. By a result we prove in
the next section, Theorem 3.2, it follows that $\alpha = \beta$. But then $\tilde{\alpha} = \tilde{\beta}$, a
contradiction. Therefore $\text{cl}(K_{\alpha}) = K_{\alpha}$. By Kadison's theorem $\tilde{\alpha}$ is a strictly pure
state of B. Then as noted in Theorem 2.1 there exists $M > 0$ such that

$$M \tilde{\alpha}(b^*b)^{1/2} \geq |b + K_{\alpha}|_q$$

for all $b \in B$.

Also using (2) above we have, for $a \in A$, $k \in K_{\alpha}$,

$$|a + K_{\alpha}|_2 = \alpha(((a + k)^*(a + k))^{1/2} \leq (a + k)^*(a + k)^{1/2} = |a + k|.$$

Therefore $|a + K_{\alpha}|_2 \leq |a + K_{\alpha}|_q$. Then for all $a \in A$,

$$M|a + K_{\alpha}|_2 = M \tilde{\alpha}(a^*a)^{1/2} \geq |a + K_{\alpha}|_q = |a + K_{\alpha}|_q \geq |a + K_{\alpha}|_2.$$

The norm $|a + K_{\alpha}|_2$ is complete on $A - K_{\alpha}$ by Theorem 2.1. Therefore $|a + K_{\alpha}|_q$
is a complete norm on $A - K_{\alpha}$.

Conversely assume that $|a + K_{\alpha}|_q$ is a complete norm on $A - K_{\alpha}$. Given
$b \in K_{\alpha}$, choose $\{b_n\} \subset A$ such that $|b_n - b| \to 0$. Then $(b_n - b) + K_{\alpha} \to 0$
as $n, m \to +\infty$. Therefore there exists $a \in A$ such that $(b_n - a) + K_{\alpha} \to 0$.

Choose $\{k_n\} \subset K_{\alpha}$ such that $|b_n - a + k_n| \to 0$. Then $|b - a + k_n| \to 0$, so that
$b - a \in \text{cl}(K_{\alpha})$. It follows that $a^*b - a^*a \in \text{cl}(K_{\alpha})$, and therefore that $\tilde{\alpha}(a^*b - a^*a)$
$= 0$. But $\tilde{\alpha}(a^*b) = 0$, since $b \in K_{\alpha}$. Then $\alpha(a^*a) = 0$, so that $a \in K_{\alpha}$. Therefore
$b \in \text{cl}(K_{\alpha})$. We have now shown that $K_{\alpha} = \text{cl}(K_{\alpha})$. We have $|a + K_{\alpha}|_q \geq |a + K_{\alpha}|_2$
for all $a \in A$ just as before. By Kadison's theorem $\tilde{\alpha}$ is a strictly pure state of
B. Then by Theorem 2.1 there exists $m > 0$ such that $|b + K_{\alpha}|_2 > m|b + K_{\alpha}|_q$
for all $b \in B$. Therefore for all $a \in A$,

$$|a + K_{\alpha}|_q \geq |a + K_{\alpha}|_2 = |a + K_{\alpha}|_2 \geq m|a + K_{\alpha}|_q = m|a + K_{\alpha}|_q.$$

It follows that $|a + K_{\alpha}|_2$ is a complete norm on $A - K_{\alpha}$, and therefore α is
strictly pure by Theorem 2.1.

3. Results concerning strictly pure states and strictly irreducible represen-
tations. The relationship between a pure state and its left kernel has never been
fully explored in a general Banach $*$-algebra. In fact to our knowledge none of
the following questions have been answered when A is a Banach algebra with
hermitian involution.

Question 1. If α is a pure state of A, is K_{α} a maximal left ideal of A?

Question 2. If α and β are pure states of A and $K_{\alpha} = K_{\beta}$, does $\alpha = \beta$?
Question 3. If \(\alpha \in \mathcal{P} \), \(M(\alpha) = 1 \), and \(K_\alpha \) is a maximal left ideal of \(A \), is \(\alpha \) a pure state of \(A \)?

We add to this list another closely related question.

Question 4. If \(\alpha \to \pi(\alpha) \) and \(\alpha \to \gamma(\alpha) \) are two algebraically equivalent irreducible \(* \)-representations of \(A \) on respective Hilbert spaces, are \(\pi \) and \(\gamma \) necessarily unitarily equivalent?

The answer to all these questions is affirmative when \(A \) is a \(B^* \)-algebra. In this section we deal with special cases of these questions. To begin with, Theorem 2.1 states that when \(\alpha \) is a strictly pure state of \(A \), then \(K_\alpha \) is a modular maximal left ideal of \(A \). This answers Question 1 in the case when \(\alpha \) is strictly pure.

Next we prove a result which easily settles Question 2 if \(\alpha \) or \(\beta \) is strictly pure. Kadison proves in [6] that when \(\alpha \) is a pure state of a \(B^* \)-algebra, then \(\mathcal{H}(\alpha) = K_\alpha + K_\alpha^* \) where \(\mathcal{H}(\alpha) \) is the null space of \(\alpha \). We have the following generalization.

Proposition 3.1. If \(\alpha \) is a strictly pure state of \(A \), then \(\mathcal{H}(\alpha) = K_\alpha + K_\alpha^* \)

Proof. Since \(M(\alpha) = 1 \), then \(|\alpha(a)|^2 \leq \alpha(a^*a) \) for all \(a \in A \). Therefore \(K_\alpha \subset \mathcal{H}(\alpha) \), and it follows that \(K_\alpha + K_\alpha^* \subset \mathcal{H}(\alpha) \). Now we prove the reverse inclusion.

By Theorem 2.1, \(K_\alpha \) is a modular left ideal of \(A \). Therefore there exists \(u \in A \) such that \(A(1 - u) \subset K_\alpha \). When \(a \in \mathcal{H}(\alpha) \), then \(a^* \in \mathcal{H}(\alpha) \), and \((u + K_\alpha, a + K_\alpha) = \alpha(a^*u) = \alpha(a^*u - a^*) = 0 \). Thus \(u + K_\alpha \) is orthogonal to \(a + K_\alpha \) in \(A - K_\alpha = \mathcal{H}(\alpha) \). \(\pi_\alpha(A) \) is a \(* \)-subalgebra of \(\mathcal{B}(\mathcal{H}_\alpha) \) which acts strictly irreducibly on \(\mathcal{H}_\alpha \). Let \(B \) be the closure of \(\pi_\alpha(A) \) in the operator norm. By the transitivity theorem [3, Théorème (2.8.3)] there exists \(\alpha \in B \), \(T = T^* \), such that \(T(u + K_\alpha) = 0 \) and \(T(a + K_\alpha) = a + K_\alpha^* \). Then there exists \(\{v_n\} \subset A \) such that \(v_n = v_n^* \) for all \(n \) and \(\|v_n a - T\| \to 0 \) where \(|\cdot| \) denotes the operator norm. Therefore \(\|v_n (u + K_\alpha)\|_2 \to 0 \) and \(\|(v_n^* a - a) + K_\alpha)\|_2 \to 0 \). Also \(v_n = v_n^* (1 - u) + v_n u \) and \(v_n (1 - u) \in K_\alpha \) for all \(n \). Then \(\|v_n + K_\alpha\|_2 \to 0 \), and finally \(\|a^*v_n + K_\alpha\|_2 \to 0 \). From the proof of Theorem 2.1 it follows that \(\|a^*v_n + K_\alpha\|_q \to 0 \) and \(\|(v_n a - a) + K_\alpha\|_q \to 0 \).

Assume for the moment the \(* \) is continuous on \(A \). There exists \(\{k_n\}, \{j_n\} \subset K_\alpha \) such that \(\|a^*v_n - k_n\| \to 0 \) and \(\|(a - v_n a) - j_n\| \to 0 \). Then \(\|a - (j_n + k_n^*)\| \leq \|v_n a - k_n\|^q + \|(a - v_n a) - j_n\|^q \to 0 \). Therefore in this case \(\mathcal{H}(\alpha) = K_\alpha + K_\alpha^* \).

In the general case, let \(P_\alpha \) be the kernel of the representation \(\pi_\alpha \). \(A/P_\alpha \) is a semisimple Banach \(* \)-algebra. Note that \(P_\alpha \subset K_\alpha \cap K_\alpha^* \). Define \(\alpha_0 \) on \(a + P_\alpha \in A/P_\alpha \) by \(\alpha_0(a + P_\alpha) = \alpha(a) \). Then \(\alpha_0 \) is a strictly pure state of \(A/P_\alpha \). By Johnson’s theorem [5, Theorem 2] the involution on \(A/P_\alpha \) is continuous. Therefore \(\mathcal{H}(\alpha_0) = K_{\alpha_0} + K_{\alpha_0}^* \) by our previous argument. Then when \(a \in \mathcal{H}(\alpha_0) \), there exists \(\{k_n\}, \{j_n\} \subset K_\alpha \) such that \(\|(a - (k_n + j_n^*)) + P_\alpha\|_q \to 0 \). Then there exists
\{p_n\} \subset P_\alpha such that \|a - (k_n + p_n + j^*_n)\| \to 0. This proves the proposition.

We are now in a position to answer Question 2 affirmatively when \(\alpha\) is assumed to be a strictly pure state of \(A\).

Theorem 3.2. Let \(\alpha\) be a strictly pure state of \(A\). Assume that \(\beta \in \mathcal{P}\), \(M(\beta) = 1\), and \(K_\alpha = K_\beta\). Then \(\alpha = \beta\).

Proof. \(K_\beta + K_\beta^* \subset \mathfrak{H}(\beta)\). Therefore

\[
\mathfrak{H}(\alpha) = \overline{K_\alpha + K_\alpha^*} = \overline{K_\beta + K_\beta^*} \subset \mathfrak{H}(\beta).
\]

It follows that there is a scalar \(\lambda > 0\) such that \(\alpha = \lambda \beta\). Then \(1 = M(\alpha) = \lambda M(\beta) = \lambda\).

The next theorem answers Question 4 in a special case.

Theorem 3.3. Assume that \(K\) and \(K\) are Hilbert spaces, and \(\pi \to \pi(\alpha)\) and \(\gamma \to \gamma(\alpha)\) are strictly irreducible *-representations of \(A\) on \(K\) and \(K\) respectively. Then if \(\pi\) and \(\gamma\) are algebraically equivalent, then \(\pi\) and \(\gamma\) are unitarily equivalent.

Proof. By hypothesis there exists a linear operator \(V\) which maps \(K\) in a one-to-one manner onto \(K\) with the property that \(V^{-1}\pi(\alpha) V = \gamma(\alpha)\) for all \(\alpha \in A\). Take \(\xi \in K\) with \(\|\xi\| = 1\), and set \(\alpha(\alpha) = (\gamma(\alpha) \xi, \xi)\) for \(\alpha \in A\). By [8, Lemma (4.5.8), p. 217] the representation \(\gamma\) is unitarily equivalent to \(\pi_\alpha\) on \(K_\alpha\). Also \(M(\alpha) = \|\xi\|^2 = 1\) by [4, Theorem (21.25), p. 323]. Then \(\alpha\) is a strictly pure state of \(A\) by [4, Theorem (21.34), p. 328]. Now set \(\eta = V(\xi)/\|V(\xi)\|\). Define \(\beta(\alpha) = (\pi(\alpha) \eta, \eta)\) for all \(\alpha \in A\). By the same argument as just applied to \(\alpha\), \(\beta\) is a strictly pure state of \(A\), and \(\pi_\beta\) is unitarily equivalent to \(\pi\). Then

\[
a \in K_\alpha \iff \gamma(\alpha) \xi = 0 \iff \gamma(\alpha)(V^{-1}(\eta)) = 0
\]

\[
\iff V^{-1}(\pi(\alpha)(\eta)) = 0 \iff \pi(\alpha) \eta = 0 \iff a \in K_\beta.
\]

Thus \(K_\alpha = K_\beta\), and it follows from Theorem 3.2 that \(\alpha = \beta\). Then \(\pi_\alpha = \pi_\beta\), so that \(\pi\) and \(\gamma\) are unitarily equivalent.

To conclude this section we consider an answer to Question 3 when \(A\) has a very special property. We hypothesize that every maximal left ideal of \(A\) is the left kernel of a strictly pure state of \(A\). In this case assume that \(\alpha\) is as in Question 3, that is, \(\alpha \in \mathcal{P}\), \(M(\alpha) = 1\), and \(K_\alpha\) is a maximal left ideal of \(A\). By the special hypothesis on \(A\) there is a strictly pure state \(\beta\) of \(A\) such that \(K_\beta = K_\alpha\). Then by Theorem 3.2, \(\alpha = \beta\). We state this result as a proposition.

Proposition 3.4. Assume that every maximal (modular) left ideal of \(A\) is the left kernel of a strictly pure state of \(A\). When \(\alpha \in \mathcal{P}\), \(M(\alpha) = 1\), and \(K_\alpha\) is a maximal (modular) left ideal of \(A\), then \(\alpha\) is a strictly pure state of \(A\).
4. Irreducible representations which are similar to *-representations. Let
\(a \to \pi(a) \) be a strictly irreducible representation (but not necessarily a *-representation) of \(\mathcal{A} \) on a Hilbert space \(\mathcal{H} \). If \(\xi \in \mathcal{H}, \xi \neq 0 \), then a straightforward algebraic argument proves that \(K_\xi = \{ a \in \mathcal{A} | \pi(a)\xi = 0 \} \) is a modular maximal left ideal of \(\mathcal{A} \). We show in the next theorem that when \(K_\xi \) is the left kernel of a strictly pure state \(\alpha \) of \(\mathcal{A} \), then \(\pi \) is similar to a *-representation of \(\mathcal{A} \) on \(\mathcal{H} \).

Theorem 4.1. Let \(a \to \pi(a)\xi \) and \(K_\xi \) be as above. Assume that \(\alpha \) is a strictly pure state of \(\mathcal{A} \) with \(K_\alpha = K_\xi \). Then there exists a *-representation \(a \to \rho(a) \) of \(\mathcal{A} \) on \(\mathcal{H} \) and a positive operator \(V \in \mathcal{B}(\mathcal{H}) \) such that, for all \(a \in \mathcal{A} \),

\[
\pi(a) = V^{-1} \rho(a) V.
\]

Proof. Since \(\pi \) is strictly irreducible, \(a \to \pi(a)\xi \) is a linear map from \(\mathcal{A} \) onto \(\mathcal{H} \). We define a sesquilinear form \([\cdot, \cdot]\) on \(\mathcal{H} \times \mathcal{H} \) by

\[
[\pi(a)\xi, \pi(b)\xi] = \alpha(b^*a),
\]

for all \(a, b \in \mathcal{A} \). Whenever \(c \in K_\alpha \) and \(d \in \mathcal{A} \), then \(\alpha(d^*c) = 0 \). This implies that \([\cdot, \cdot]\) is well defined.

Next we prove that \([\cdot, \cdot]\) is a bounded form. By a theorem of B. E. Johnson [5, Theorem 1, p. 537], \(\pi \) is a continuous map of \(\mathcal{A} \) into \(\mathcal{B}(\mathcal{H}) \). If \(k \in K_\xi, a \in \mathcal{A}, \)

\[
||\pi(a)\xi|| = ||\pi(a + k)\xi|| \leq ||\pi|| ||\xi|| ||a + k||.
\]

Therefore for any \(a \in \mathcal{A} \),

(1) \[
||\pi(a)\xi|| \leq ||\pi|| ||\xi|| ||a + K_\xi||_q.
\]

Then by the Closed Graph Theorem there exists \(N > 0 \) such that, for all \(a \in \mathcal{A} \),

(2) \[
||a + K_\xi||_q \leq N ||\pi(a)\xi||.
\]

As shown in the proof of Theorem 2.1, the norms \(||\cdot||_2 \) and \(||\cdot||_q \) are equivalent on \(\mathcal{A} - K_\alpha \). In particular there exists \(J > 0 \) such that \(||a + K_\alpha||_2 \leq J ||a + K_\alpha||_q \) for all \(a \in \mathcal{A} \). Therefore for all \(a, b \in \mathcal{A} \),

(3) \[
|\alpha(b^*a)| = ||(a + K_\alpha, b + K_\alpha)|| \leq J^2 ||a + K_\alpha||_q ||b + K_\alpha||_q.
\]

Then combining (2) and (3) we have

\[
|[\pi(a)\xi, \pi(b)\xi]| = |\alpha(b^*a)| \leq J^2 ||a + K_\alpha||_q ||b + K_\alpha||_q \leq J^2 N^2 ||\pi(a)\xi|| ||\pi(b)\xi||.
\]

This proves that \([\cdot, \cdot]\) is bounded on \(\mathcal{H} \times \mathcal{H} \).

The form \([\cdot, \cdot]\) is a symmetric, positive definite, bounded sesquilinear form on \(\mathcal{H} \times \mathcal{H} \). Therefore there exists an operator \(U \in \mathcal{B}(\mathcal{H}) \) such that \(U = U^* \), \(U \geq 0 \), and \([\phi, \psi] = (U\phi, \psi)\), when \(\phi, \psi \in \mathcal{H} \).

By (3), for all \(a \in \mathcal{A} \),

\[
||a + K_\alpha||_2^2 = \alpha(a^*a) \leq J^2 (||a + K_\alpha||_q)^2.
\]
By the proof of Theorem 2.1 there exists \(P > 0 \) such that, for all \(a \in A \),
\[
\| a + K_a \|_q \leq P \| a + K_a \|_2.
\]

Given \(a \in A \), set \(\psi = \pi(a)\xi \). Then by (1),
\[
\| \psi \| = \| \pi(a)\xi \| \leq \| \pi \| \| \xi \| \| a + K_a \|_q.
\]

Set \(M = \| \pi \| \| \xi \| P \). Then
\[
\| \psi \|^2 \leq M^2(\| a + K_a \|_2)^2 = M^2\alpha(a^*a) = M^2[\pi, \psi].
\]
Therefore
\[
\| \psi \|^2 \leq M^2[\psi, \psi] = M^2(\psi, \psi) \leq M^2\| \psi \| \| \psi \|.
\]

Finally \(\| \psi \| \leq M^2\| \psi \| \), and this proves that \(U^{-1} \in \mathcal{B}(\mathcal{H}) \).

Now set \(V = V^{1/2} \). Then \([\phi, \psi] = (V\phi, V\psi) \) for all \(\phi, \psi \in H \). Let \(\rho(a) = V\pi(a)V^{-1} \), \(a \in A \). Given \(\psi_1, \psi_2 \in H \), there exists \(\phi_1, \phi_2 \in H \) and \(a_1, a_2 \in A \) such that
\[
\psi_i = V\phi_i \quad \text{and} \quad \phi_i = \pi(a_i)\xi, \quad i = 1, 2.
\]

Then
\[
(\rho(a)\psi_1, \psi_2) = (V\pi(a)V^{-1}V\phi_1, V\phi_2)
= [\pi(a)\phi_1, \phi_2] = [\pi(a)\pi(a_1)\xi, \pi(a_2)\xi]
= \alpha(a^*(a_1)) = \alpha((a^*a_2)^*a_1)
= [\pi(a_1)\xi, \pi(a)\pi(a_2)\xi] = [\phi_1, \pi(a^*)\phi_2]
= (V\phi_1, V\pi(a^*)\phi_2) = (V\phi_1, V\pi(a^*)V^{-1}V\phi_2) = (\psi_1, \rho(a^*)\psi_2).
\]

Therefore \(\rho(a^*) = \rho(a)^* \) for all \(a \in A \) which completes the proof of the theorem.

Corollary 4.2. Assume that every modular maximal left ideal of \(A \) is the left kernel of a strictly pure state of \(A \). Let \(a \rightarrow \pi(a) \) be a strictly irreducible representation of \(A \) on a Hilbert space \(H \). Then there exists a \(*\)-representation \(a \rightarrow \rho(a) \) of \(A \) on \(H \) and a positive operator \(V \in \mathcal{B}(H) \) such that, for all \(a \in A \),
\[
\pi(a) = V^{-1}\rho(a)V.
\]

5. Some examples. When \(A \) is \(B^*\)-algebra, then \(A \) has the following two properties:

(I) Every pure state of \(A \) is strictly pure.

(II) Every modular maximal left ideal of \(A \) is the left kernel of a strictly pure state of \(A \).

Also when \(G \) is a compact topological group and \(1 \leq p < +\infty \), then
A = L^p(G) (or C(G), the continuous functions on G) has properties (I) and (II). Here the multiplication is, as usual, convolution. All the irreducible *-representations of A in this case are finite dimensional. In this section we present two examples of algebras which have properties (I) and (II), but which are not in general B*-algebras, and which need not in general have any finite dimensional *-representations.

Example 5.1. Let A be a Banach algebra which is also a dense *-ideal in a B*-algebra B. Any full Hilbert algebra is a particular example of such a Banach algebra; see [1]. Assume that \(a \rightarrow \pi(a) \) is an irreducible *-representation of A on a Hilbert space \(\mathcal{H} \). Then as shown in [1, Proposition 4.1] \(\pi \) extends uniquely to a *-representation \(b \rightarrow \widehat{\pi}(b) \) of B on \(\mathcal{H} \). Therefore by Kadison's theorem \(\widehat{\pi}(B) \) acts strictly irreducibly on \(\mathcal{H} \). Since A is a dense ideal of B, \(\pi(A) = \widehat{\pi}(A) \) is a non-zero ideal in \(\widehat{\pi}(B) \). Given \(\xi \in \mathcal{H} \), \(\pi(A)\xi \) is a \(\pi(B)\)-invariant subspace of \(\mathcal{H} \). Therefore \(\pi(A)\xi = \mathcal{H} \), so that \(a \rightarrow \pi(a) \) is strictly irreducible on \(\mathcal{H} \). It follows that A has property (I).

Now assume that \(M \) is a modular maximal left ideal of A. Then there exists \(u \in A \) such that \(A(1 - u) \subseteq M \). Let \(N = \{ b \in B | bu \in M \} \). \(N \) is a left ideal of B and \(M = N \cap A \). Furthermore if \(b \in B \), \(b(1 - u)u = bu(1 - u) \in M \) since \(bu \in A \). Therefore \(N \) is a proper modular left ideal of B. By [8, Theorem (4.9.8), p. 251] there exists \(\tilde{\alpha} \) a pure state of B with \(N \subseteq K_{\tilde{\alpha}} \). Then \(M = K_{\tilde{\alpha}} \cap A \). It follows that \(\alpha \), the restriction of \(\tilde{\alpha} \) to A, is a strictly pure state of A with \(K_\alpha = M \). We have shown that A has property (II).

Example 5.2. Assume that \(\Omega \) is a compact Hausdorff space and B is a B*-algebra with identity \(e \). Let \(C(\Omega, B) \) be the algebra of all continuous B-valued functions on \(\Omega \). \(C(\Omega, B) \) is a B*-algebra with identity. Assume that A is a Banach algebra which is a *-subalgebra of \(C(\Omega, B) \) containing the identity. We also assume that A has the properties:

1. Given \(\omega \in \Omega \) and \(b \in B \), there exists \(f \in A \) such that \(f(\omega) = b \).
2. \(f \in A \) is left invertible in A if and only if \(f(\omega) \) is invertible in B for all \(\omega \in \Omega \).

We mention a specific example of such an algebra A: Let \(\Omega \) be the interval \([0, 2\pi]\) with 0 and \(2\pi \) identified and with the usual topology. Let B be any B*-algebra with identity. We define A to be the algebra of all functions of the form

\[
f(t) = \sum_{n = -\infty}^{+\infty} a_n e^{int}
\]

where \(t \in \Omega \) and \(\{a_n\} \) is any sequence in B such that \(\sum_{n = -\infty}^{+\infty} \|a_n\| < +\infty \). When \(f(t) = \sum_{n = -\infty}^{+\infty} a_n e^{int} \), let \(\|f\| = \sum_{n = -\infty}^{+\infty} \|a_n\|. \) The algebra A is discussed by

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Bochner and Phillips in [2]. That \(A \) has property (2) above is the assertion of [2, Theorem 1, p. 409]. The rest of the required properties of \(A \) are easily verified.

Now assume that \(A \) is any Banach *-subalgebra of \(C(\Omega, B) \) which contains the identity and satisfies (1) and (2). When \(\omega \in \Omega \) and \(N \) is a maximal left ideal of \(B \), we define

\[
K(\omega, N) = \{ f \in A \mid f(\omega) \in N \}.
\]

It is not difficult to see that \(K(\omega, N) \) is a maximal left ideal of \(A \). We prove the converse of this. Assume that \(M \) is a maximal left ideal of \(A \). For any \(\omega \in \Omega \), \(M(\omega) = \{ f(\omega) \mid f \in M \} \) is a left ideal of \(B \). Suppose that \(M(\omega) = B \) for all \(\omega \in \Omega \).

Then for each \(\omega \in \Omega \), we can choose a function \(g_\omega \in M \) such that \(g_\omega(\omega) = e \).

Therefore there exists an open set \(U_\omega \) in \(\Omega \) such that \(\omega \in U_\omega \) and \(g_\omega(y) \) is invertible in \(B \) for all \(y \in U_\omega \). Then \((g_\omega^* g_\omega)(y) \) is invertible in \(B \) for all \(y \in U_\omega \).

Choose a finite cover \(U_{\omega_1}, \ldots, U_{\omega_\xi} \) for \(\Omega \). Set \(f = \sum_{k=1}^{\xi} g_\omega^* g_\omega \in M \). When \(b_k \in B, b_k \geq 0, 1 \leq k \leq \xi \), and \(b_j \) is invertible for some \(j \), then \(h_1 + \cdots + h_\xi \) is invertible (this is easy to verify when the \(b_k \) are positive operators on a Hilbert space, since the lower bound of the numerical range of the sum \(h_1 + \cdots + h_\xi \) is greater or equal to the lower bound of the numerical range of \(b_j \)). But then for all \(y \in \Omega \), \(f(y) \) is invertible in \(B \). By (2), \(f \) is then invertible in \(A \), which contradicts the fact that \(f \in M \). It follows that for some \(\omega \in \Omega \), \(M(\omega) \) is a proper left ideal of \(B \).

Then there exists a maximal left ideal of \(B \) such that \(M(\omega) \subset N \).

Therefore \(\omega \in \Omega \), \(M(\omega) \subset N \) by the assumption that \(M \) is maximal.

Given \(M \) a maximal left ideal of \(A \), then as we have shown above \(M = K(\omega, N) \) for some \(\omega \in \Omega \) and some maximal left ideal \(N \) of \(B \). Choose \(\beta \) a pure state of \(B \) such that \(K_\beta = N \). Define \(\alpha \) on \(A \) by \(\alpha(f) = \beta(f(\omega)) \), \(f \in A \). Then \(K_\alpha = K(\omega, N) = M \).

It is easy to verify that the norm \(|f + K_\alpha|_2 = \alpha(f^* f)^{1/2} \) is a complete norm on \(A - K_\alpha \). Therefore \(\alpha \) is a strictly pure state of \(A \). This proves that \(A \) has property (II).

Now assume that \(\alpha \) is a pure state of \(A \). Then by [3, Lemma 2.10.1, p. 50] \(\alpha \) has an extension to a pure state \(\beta \) of \(C(\Omega, B) \). By [7, Corollary, p. 337] there exists a point \(\omega \in \Omega \) and a maximal left ideal \(N \) of \(B \) such that \(K_\beta = \{ f \in C(\Omega, B) \mid f(\omega) \in N \} \).

Therefore \(K_\alpha = K_\beta \cap A = K(\omega, N) \). It follows that \(\alpha \) is a strictly pure state of \(A \) by Proposition 3.4. Therefore \(A \) has property (I).

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OREGON, EUGENE, OREGON 97403