MAXIMAL REGULAR RIGHT IDEAL SPACE
OF A PRIMITIVE RING

BY

KWANGIL KOH AND JIANG LUH

ABSTRACT. If R is a ring, let $X(R)$ be the set of maximal regular right ideals of R and $\mathfrak{P}(R)$ be the lattice of right ideals. For each $A \in \mathfrak{P}(R)$, define $\text{supp}(A) = \{ I \in X(R) \mid I \not\subseteq A \}$. We give a topology to $X(R)$ by taking $\{ \text{supp}(A) \mid A \in \mathfrak{P}(R) \}$ as a subbase. Let R be a right primitive ring. Then $X(R)$ is the union of two proper closed sets if and only if R is isomorphic to a dense ring with nonzero socle of linear transformations of a vector space of dimension two or more over a finite field. $X(R)$ is a Hausdorff space if and only if either R is a division ring or R modulo its socle is a radical ring and R is isomorphic to a dense ring of linear transformations of a vector space of dimension two or more over a finite field.

Introduction. For a ring R, define $X(R)$ to be the set of maximal regular right ideals of R. Then $X(R)$ is a nonempty set if and only if R is not a radical ring. If A is a right ideal of a ring R, define the support of A to be the set of maximal regular right ideals of R which do not contain A. We topologize $X(R)$ by defining that a subset is open if and only if it is an arbitrary union of finite intersections of the supports of right ideals in R; that is, the supports of the right ideals form a subbasis for this topology. We will call $X(R)$ together with this topology the maximal regular right ideal space of the ring R. Recall that a topological space is irreducible (refer to [3, p. 13]) if it is not the union of two proper closed subsets, and it is reducible if it is not irreducible. Our main results in this paper are as follows: Let R be a (right) primitive ring. Then $X(R)$ is reducible if and only if R is isomorphic to a dense ring with nonzero socle of linear transformations of a vector space of dimension two or more over a finite field. $X(R)$ is a Hausdorff space if and only if either R is a division ring or R is isomorphic to a dense ring of linear transformations of a vector space over a finite field such that R modulo its socle is a radical ring. If R has 1, then $X(R)$ is a Hausdorff space if and only if either R is a division ring or a finite ring.

1. Preliminaries.

1.1 Definition. If A is a right ideal of a ring R, the support of A is the...
set of maximal regular right ideals of R which do not contain A. It will be denoted by $\text{supp}(A)$.

1.2 Definition. For a ring R, let $X(R)$ be the set of maximal regular right ideals in R. We give a topology to $X(R)$ which is generated by the subbasis consisting of all supports of the right ideals in R. We will call $X(R)$ together with this topology the \textit{maximal regular right ideal space} of R. It will simply be denoted by $X(R)$.

1.3 Definition. If x is an element of $X(R)$ for some ring R, then x is also a right ideal of the ring R. Therefore, it is convenient to make a distinction by writing $j(x)$ for the right ideal x and if Y is a subset of $X(R)$, $j(Y) = \bigcap \{j(x)\mid x \in Y\}$. If E is a subset of R, we define $b(E) = \{x \in X(R)\mid j(x) \supseteq E\}$. $b(E)$ is called the \textit{bull} of E and we write $\text{supp}(E) = X(R) \setminus b(E)$.

1.4 Definition. A topological space is called \textit{irreducible} [3, p. 155] if it is not the union of two proper closed subsets. A space which is not irreducible is \textit{reducible}.

1.5 Definition. If X is a set which is a finite union of subsets Y_1, Y_2, \ldots, Y_n, we say that X is an \textit{irredundant} union of Y_i provided that $X \neq Y_1 \cup Y_2 \cup \cdots \cup Y_{i-1} \cup Y_{i+1} \cup \cdots \cup Y_n$ for every i such that $1 \leq i \leq n$.

1.6 Proposition. If R is a ring and $J(R)$ is the Jacobson radical of R then $X(R)$ is homeomorphic to $X(R/J(R))$.

\textbf{Proof.} Straightforward.

1.7 Proposition. If R is a ring with a unit element, then $X(R)$ is a compact space.

\textbf{Proof.} In view of the Alexander subbase theorem, it suffices to show that if

$$X(R) = \bigcup \{\text{supp}(A_\alpha)\mid A_\alpha \in \Lambda\},$$

then there exists a finite subset $\{\alpha_1, \alpha_2, \ldots, \alpha_n\}$ in Λ such that $X(R) = \bigcup_{i=1}^n \text{supp}(A_{\alpha_i})$. Since $X(R) = \bigcup \{\text{supp}(A_\alpha)\mid \alpha \in \Lambda\}$, $b(\Sigma_{\alpha \in \Lambda} A_\alpha) = \bigcap \{b(A_\alpha)\mid \alpha \in \Lambda\} = \emptyset$, and hence $\Sigma_{\alpha \in \Lambda} A_\alpha = R$. Thus $1 = a_{\alpha_1} + a_{\alpha_2} + \cdots + a_{\alpha_n}$ for some $a_{\alpha_i} \in A_{\alpha_i}$, $i = 1, 2, \ldots, n$, and $\bigcap_{i=1}^n b(A_{\alpha_i}) = \emptyset$. Therefore, $X(R) = \bigcup_{i=1}^n \text{supp}(A_{\alpha_i})$.

1.8 Proposition. If Y is an irreducible subset of $X(R)$, then the closure \overline{Y} of Y is equal to $b(j(Y))$.

\textbf{Proof.} Clearly, $\overline{Y} \subseteq b(j(Y))$. Let $x \in b(j(Y))$. If $x \notin \overline{Y}$, then there exists a finite number of right ideals A_1, A_2, \ldots, A_n in R such that $x \in \bigcap_{i=1}^n \text{supp}(A_i)$ and $Y \cap (\bigcap_{i=1}^n \text{supp}(A_i)) = \emptyset$. Hence $Y \subseteq \bigcup_{i=1}^n b(A_i)$. Since Y is irreducible, $Y \subseteq b(A_i)$ for some A_i. Hence $A_i \subseteq j(Y) \subseteq j(x)$. This is impossible since $x \notin \text{supp}(A_i)$.

1.9 Corollary. $X(R)$ is a T_1-space.

Proof. Let $x \in X(R)$. Then $\{x\} = b(j(x)) = \{x\}$ by 1.8.

1.10 Example. It is not true, in general, that if Y is a subset of $X(R)$ then $\overline{Y} = b(j(Y))$. For example, let R be the ring of 2×2 matrices over the field of real numbers and let $x = \{(a \ b) | a, b \text{ are real numbers}\}$ and $y = \{(0 \ c) | c, d \text{ are real numbers}\}$. Then $\{x, y\} = \{x, y\}$, but $b(j(x, y)) = X(R)$.

1.11 Proposition. $X(R)$ is reducible if and only if there exists a finite number of right ideals A_1, A_2, \ldots, A_n, $n \geq 2$, in R such that $X(R)$ is an irredundant union of $b(A_1), b(A_2), \ldots, b(A_n)$.

Proof. Straightforward.

1.12 Proposition. If R is a primitive ring and A is a right ideal of R, then either $\text{supp}(A) = \emptyset$ or $j(\text{supp}(A)) = \{0\}$.

Proof. Suppose $\text{supp}(A) \neq \emptyset$ and $j(\text{supp}(A)) \neq \{0\}$. Let $B = j(\text{supp}(A))$. Then B is a nonzero proper right ideal of R, $\text{supp}(A) \subseteq b(B)$ and $\text{supp}(B) \cap \text{supp}(A) = \emptyset$. Since B is a nonzero right ideal of a primitive ring, $\text{supp}(B) \neq \emptyset$ and $X(R) = b(B) \cup b(A)$.

Let M be a faithful simple (right) R-module. Since for each $0 \neq m \in M$, $m^+ = \{r \in R | mr = 0\}$ is a maximal regular right ideal of R, either $mA = 0$ or $mB = 0$.

Let $M_1 = \{m \in M | mA = 0\}$ and $M_2 = \{m \in M | mB = 0\}$. Then M_1 and M_2 are subgroups of M and $M = M_1 \cup M_2$. Hence either $M = M_1$ or $M = M_2$. Therefore either $MA = 0$ or $MB = 0$. This is impossible since M is faithful.

1.13 Remark. If R is a ring with 1 and $X(R)$ is irreducible, then R is isomorphic to the ring of global sections of the simple R-sheaf over $X(R)$ (refer to [3, p. 45] for the definition of a simple sheaf). Hence R can be identified with the ring of all continuous functions from $X(R)$ to R. To see this, let $\hat{r}(x) = (x, r)$ for every $r \in R$ and $x \in X(R)$. Then \hat{r} is a global section of the simple sheaf over $X(R)$. If f is an arbitrary global section, then $f(X(R)) = X(R) \times \{r\}$ for some $r \in R$ since $X(R)$ is irreducible (hence it is connected). Thus $f = \hat{r}$. Clearly, $r \mapsto \hat{r}$ is an isomorphism of R onto the ring of all global sections.

2. Primitive rings with reducible maximal regular right ideal spaces. In this section, we will give a structure theorem of primitive rings whose maximal regular right ideal spaces are reducible. The basic facts about a primitive ring, which we will use freely in this section, could be found in [2].

2.1 Lemma. Let V be a vector space over a division ring D. Assume that $V = V_1 \cup \cdots \cup V_n$, where the V_i are subspaces of V, $n \geq 2$, and the union is irredundant. Then D is a finite field, and the dimension of $V/(V_1 \cap \cdots \cap V_n)$ is finite.
Proof. The fact that D is a finite field follows from Lemma 2 of [1, p. 32]. Suppose that the dimension of $V/(V_1 \cap \cdots \cap V_n)$ is infinite. Since $V/\bigcap_{i=1}^n V_i$ is the irredundant union of proper subspaces $V_i/\bigcap_{j \neq i} V_j$, we may assume, without loss of generality, that $\bigcap_{i=1}^n V_i = \{0\}$. Since V is infinite dimensional, there is a subspace V_{t_1} for some t_1, $1 \leq t_1 \leq n$, such that V_{t_1} is infinite dimensional. Let i be a positive integer less than or equal to n such that $i \neq t_1$. Let $v_i \in V_i \setminus \bigcup_{k \neq i} V_k$. Let $N(t_1) = \{v_i + w | w \in V_{t_1}\}$. Since $N(t_1) \cap V_{t_1} = \emptyset$, $N(t_1) \subseteq \bigcup_{k \neq t_1} V_k$. Since $N(t_1)$ is an infinite set, there is a subspace V_{t_2} for some t_2 such that $1 \leq t_2 \leq n$ and $t_2 \neq t_1$ and V_{t_2} contains infinitely many $v_i + w$'s, say $v_i + w_1$, $v_i + w_2$, \ldots, where $w_j \in N(t_1)$. It follows that $w_1 - w_j = (v_i + w_1) - (v_i + w_j) \in V_{t_2}$ for infinitely many w_j's in V_{t_1}. Hence $V_{t_1} \cap V_{t_2}$ is an infinite set and hence it is infinite dimensional since $V_{t_1} \cap V_{t_2}$ is a vector space over the finite field D. Now assume that $V_{t_1} \cap V_{t_2} \cap \cdots \cap V_{t_k}$ is infinite dimensional for some distinct positive integers t_1, t_2, \ldots, t_k each of which is less than or equal to n. Let i be a positive integer less than or equal to n such that $i \notin \{t_1, t_2, \ldots, t_k\}$. Let $v_i \in V_i \setminus \bigcup_{j \neq i} V_i$. Define $N(t_1, t_2, \ldots, t_k) = \{v_i + w | w \in \bigcap_{j=1}^k V_{t_j}\}$. Then $N(t_1, t_2, \ldots, t_k) \cap V_{t_j} = \emptyset$ for every t_j, $1 \leq j \leq k$. Hence there is a subspace $V_{t_{k+1}}$ for some $1 \leq t_{k+1} \leq n$ such that $V_{t_{k+1}}$ contains infinitely many elements of $N(t_1, t_2, \ldots, t_k)$; hence $\bigcap_{i=1}^{k+1} V_{t_i}$ is infinite dimensional. Thus, by inductive argument, $\bigcap_{i=1}^n V_i$ is an infinite dimensional space, which is absurd.

2.2 Remark. If V is a vector space over a finite field, say D, such that $\dim V \geq 2$, then V is a finite union of proper subspaces. Let v_1, v_2 be linearly independent elements in V and let N be a subspace such that $V = Dv_1 \oplus Dv_2 \oplus N$. For every pair $(\alpha, \beta) \in D \times D$, define $U(\alpha, \beta) = D(\alpha v_1 + \beta v_2) \oplus N$. Then $U(\alpha, \beta) \in D \times D$.

2.3 Lemma. Let V be a vector space of dimension at least 2 over a finite field D. Let R be a dense ring of linear transformations of V, such that the socle S of R is not zero. Let v and w be linearly independent vectors of V. Then there is a subspace W of V such that

(a) $V = W \oplus Dv \oplus Dw$;

(b) for each α, β in D, $U(\alpha, \beta) = W \oplus D(\alpha v + \beta w)$ and $U(\alpha, \beta)^\perp = \{r \in R | U(\alpha, \beta)r = 0\}$; and

(c) $X(R) = U_{\alpha, \beta \in D}(U(\alpha, \beta)^\perp) \cup b(S)$.

Proof. Since S is also a dense ring of linear transformations of V, and v, w are linearly independent, there is an s in S such that $vs = v$ and $ws = 0$. Since Vs is a finite dimensional subspace of V, there exist v_2, v_3, \ldots, v_n in Vs such that $\{v, v_2, v_3, \ldots, v_n\}$ is a basis for Vs. Let $t \in R$ such that $vt = v$.
and \(v_i t = v \) for all \(i \) such that \(2 \leq i \leq n \). Let \(a = st \). Then \(V a = D v \), \(v a = v \) and \(w a = 0 \). In a similar manner, we can choose \(b \) in \(R \) such that \(V b = D w \), \(w b = w \) and \(v b = 0 \). Let \(W = \ker a \cap \ker b \). Then \(W = \ker(a + b) \) since \(D v \cap D w = \{0\} \). Since \(v a = v \), \(w b = w \), and \(w a = 0 = v b \), for any \(x \) in \(V \), \((x(a + b) - x) \cdot (a + b) = 0 \). Hence \(V = W \oplus D v \oplus D w \) and \(W^\perp \supseteq \{a, b\} \). For \(\alpha, \beta \) in \(D \), let \(U(\alpha, \beta) = W \oplus D(\alpha v + \beta w) \). We claim that the right ideal \(U(\alpha, \beta)^\perp = \{r \in R | U(\alpha, \beta) r = 0\} \) is not zero. It is clear that if either \(\alpha = 0 \) or \(\beta = 0 \), then either \(a \) or \(b \) is an element of \(U(\alpha, \beta) \). So assume \(\alpha \neq 0 \) and \(\beta \neq 0 \). Then \(\beta w b \neq 0 \) and there exists \(r \) in \(R \) such that \(\beta w b r = \alpha \omega a \). Now \((\alpha v + \beta w) b r = \beta w b r = \alpha \omega a = (\alpha v + \beta w) a \). Hence \((\alpha v + \beta w) (b r - a) = 0 \) and \(b r - a \in U(\alpha, \beta)^\perp \).

If \(x \) is an element of \(X(R) \), then \(\langle x \rangle \supseteq S \) or \(R/\langle x \rangle \cong V \) as \(R \)-modules. Hence if \(x \notin b(S) \), then \(\langle x \rangle = \{r \in R | r v = 0\} \) for some \(\neq v \in V \). In this case, \(v \in U(\alpha, \beta) \) for some \(\alpha, \beta \) in \(D \) and \(\langle x \rangle \supseteq U(\alpha, \beta)^\perp \).

2.4 Theorem. Let \(R \) be a (right) primitive ring. Then \(X(R) \) is reducible if and only if \(R \) is isomorphic to a dense ring with nonzero socle of linear transformations of a vector space of dimension two or more over a finite field.

Proof. Assume that \(X(R) \) is reducible. Then by 1.11, there exists a finite number of right ideals \(A_1, A_2, \ldots, A_n, n \geq 2 \), in \(R \) such that \(X(R) = \bigcup_{i=1}^{n} b(A_i) \) and such that this union is irredundant. Let \(V \) be a faithful simple (right) \(R \)-module and let \(D = \text{End}_R(V) \). Then \(D \) is a division ring, \(V \) is a left vector space over \(D \) and \(R \) is a dense ring of linear transformations of \(V \) over \(D \). For each \(i, 1 \leq i \leq n \), define \(V_i = \{v \in V | v A_i = 0\} \). Then \(V_i \) is a subspace of \(V \) and \(V_i \neq V \) for every \(i \) since \(A_i \neq 0 \) and \(V \) is faithful. For any \(0 \neq v \in V \), \(v^\perp = \{r \in R | r v = 0\} \) is a member of \(X(R) \). Therefore \(v^\perp \) is a member of some \(b(A_i) \) and hence \(v \in V_i \) and \(V = \bigcup_{i=1}^{n} V_i \). Thus, by 2.1, \(D \) is a finite field and the dimension of \(V \cap \bigcap_{i=1}^{n} V_i \) is finite. Therefore, there is a finite dimensional subspace \(M_i \) such that \(M_i \oplus V_i = V \) for each \(i \) and \(\dim V \geq 2 \) since \(V_i \neq V \). Thus every element in the right ideal \(A_i \) is of finite rank and the socle of \(R \) is not zero. Conversely, assume that \(R \) is isomorphic to a dense ring with nonzero socle \(S \) of linear transformations of a vector space \(V \) of dimension two or more over a finite field \(D \). Then by 2.3(c), \(X(R) = \bigcup_{\alpha, \beta \in D} b(U(\alpha, \beta)^\perp) \cup b(S) \) and hence \(X(R) \) is reducible.

2.5 Theorem. Let \(R \) be a primitive ring and \(S \) be the socle of \(R \). If \(X(R) \) is a Hausdorff space, then either \(R \) is a division ring or \(R/S \) is a radical ring and \(R \) is a dense ring of linear transformations of a vector space over a finite field.
Proof. If \(X(R) \) is a Hausdorff space and \(R \) is not a division ring, then certainly \(X(R) \) is reducible. Hence by 2.4, \(R \) has nonzero socle and it is isomorphic to a dense ring of linear transformations of a vector space \(V \) of dimension two or more over a finite field \(D \). If \(R/S \) is not a radical ring, then \(b(S) \neq \emptyset \). Let \(x, y \) be two points in \(X(R) \) such that \(x \notin b(S) \) and \(y \in b(S) \). We shall show that \(x \) and \(y \) cannot be separated in \(X(R) \). Since \(x \notin b(S) \), \(f(x) = v^\perp \) for some \(0 \neq v \in V \).

Suppose there exist right ideals \(S_1, S_2, \ldots, S_p, T_1, T_2, \ldots, T_q \) such that \(x \in \bigcap_{i=1}^p \text{supp}(S_i) \), \(y \in \bigcap_{j=1}^q \text{supp}(T_j) \) such that \(\bigcap_{i=1}^p \text{supp}(S_i) \cap \bigcap_{j=1}^q \text{supp}(T_j) = \emptyset \). First we note that the separation still holds if we replace \(S_i \) by \(S_i S \) for every \(i, 1 \leq i \leq p \), since \(x \notin \text{supp}(S_i) \cap \text{supp}(S) = \text{supp}(S S) \). Thus, without loss of generality, we may assume that \(S_i \subseteq S \) for every \(i \). Since \(f(x) = v^\perp \) and \(x \in \bigcap_{i=1}^p \text{supp}(S_i) \), \(v S_i \neq 0 \) for every \(i \). Let \(s_i \in S_i \) such that \(v s_i \neq 0 \) for every \(i \). Since each \(s_i \) is of finite rank, \(V/\text{Ker} s_i \) is finite dimensional. Thus, \(V/\bigcap_{i=1}^p \text{Ker} s_i \) being a subdirect sum of the vector spaces \(V/\text{Ker} s_i \) is finite dimensional. Note that \(T_j \notin j(y) \) for every \(j, 1 \leq j \leq q \), and \(S \subseteq f(y) \). Therefore \(T_j \subseteq S \neq \emptyset \) for every \(j \). Let \(t_j \in T_j \setminus S \) and let \(w_j = \sum_{i=1}^p \text{Ker} s_i |w_{t_j} \in \Sigma_{i=1}^q \text{Dut}_i \) for every \(j, 1 \leq j \leq q \). We claim that \(\bigcap_{i=1}^p \text{Ker} s_i /W_j \) is infinite dimensional for every \(j \). For if \(\bigcap_{i=1}^p \text{Ker} s_i /W_j \) is finite dimensional for some \(j \) and if \(\bigcap_{i=1}^p \text{Ker} s_i = W_j \) for some finite dimensional subspace \(U_j \), then \(\bigcap_{i=1}^p \text{Ker} s_i /W_j = W_j t_j + U_j \) is a finite dimensional subspace of \(V \). Since \(V/\bigcap_{i=1}^p \text{Ker} s_i \) is finite dimensional, there is a finite dimensional subspace \(W \) such that \(V = (\bigcap_{i=1}^p \text{Ker} s_i) \oplus W \). Then \(Vt_j = (\bigcap_{i=1}^p \text{Ker} s_i) t_j + Wt_j \) is also finite dimensional and \(t_j \notin S \). This is impossible since, by choice, \(t_j \notin S \). Thus \(\bigcap_{i=1}^p \text{Ker} s_i /W_j \) is infinite dimensional for each \(j \) and \(\bigcap_{i=1}^p \text{Ker} s_i /W_j \neq \bigcup_{i=1}^q W_j \). Hence there exists \(w \in \bigcap_{i=1}^p \text{Ker} s_i \) such that \(w \notin \bigcup_{i=1}^q W_j \). This means that \(w s_i = 0 \) for every \(i, 1 \leq i \leq p \), and \(w t_j \notin \Sigma_{i=1}^q \text{Dut}_i \) for every \(j, 1 \leq i \leq q \). Now, we consider the vector \(v + w \). Then \((v + w)s_i = vs_i \neq 0 \) for every \(i \) such that \(1 \leq i \leq p \) and \((v + w)t_j \neq 0 \) for every \(j, 1 \leq j \leq q \). For if \((v + w)t_j = 0 \) for some \(j \), then \(w t_j = -v t_j \in \Sigma_{i=1}^q \text{Dut}_i \). Thus \((v + w)^\perp \notin (\bigcap_{i=1}^p \text{supp}(S_i)) \cap (\bigcap_{j=1}^q \text{supp}(T_j)) = \emptyset \). This is a contradiction.

2.6 Theorem. Let \(R \) be a primitive ring and \(S \) be the socle of \(R \). If \(R/S \) is a radical ring and \(R \) is isomorphic to a dense ring of linear transformations of a vector space \(V \) over a finite field \(D \), then \(X(R) \) is a Hausdorff space.

Proof. Let \(x, y \) be two distinct members of \(X(R) \). Since \(R/S \) is a radical ring, there exist \(v \) and \(w \) in \(V \) such that \(f(x) = v^\perp \), \(f(y) = w^\perp \) and \(Dv \cap Dw = \{0\} \). Moreover, \(v^\perp \cap S \notin w^\perp \) and \(w^\perp \cap S \notin v^\perp \). Let \(a \in (w^\perp \cap S) \setminus v^\perp \) and \(b \in (v^\perp \cap S) \setminus w^\perp \). Then \(aw = wb = 0 \), \(va \neq 0 \), and \(wb \neq 0 \). Since \(a \in S \), \(Va = Dva \oplus U \) for some finite dimensional subspace \(U \) of \(V \). Hence there is \(r \) in \(R \) such that
Ur = 0 but var = v. Therefore, Var = Dv, war = 0, and V = Ker ar ⊕ Dv. Likewise there is r₀ in R such that Vbr₀ = Dw, vbr₀ = 0, wbr₀ = w, and V = Ker br₀ ⊕ Dw. Since Ker ar ≠ Ker br₀ and the codimensions of Ker ar and Ker br₀ are 1, V = Ker ar + Ker br₀. Thus dim(Ker ar/Ker ar ∩ Ker br₀) = dim(V/Ker br₀) = 1. Hence codim(Ker ar ∩ Ker br₀) = dim(V/Ker br₀) + dim(Ker ar/Ker ar ∩ Ker br₀) = 2 and therefore, V = (Ker ar ∩ Ker br₀) ⊕ Dw ⊕ Dv. For every α, β in D, define U(α, β) = (Ker ar ∩ Ker br₀) ⊕ D(αv + βw). Then V = ∪ₐ,β∈D U(α, β). We shall show that U(α, β) ≠ 0 for each pair (α, β) ∈ D × D. Clearly ar ∈ U(0, β)⊥ and br₀ ∈ U(α, 0)⊥. Assume α ≠ 0 and β ≠ 0. Then there is c ∈ R such that αvc = βw. Consequently, (αv + βw)arc = αvarc = αvc = βw = (αv + βw)br₀ since var = v and wbr₀ = w. Hence D(αv + βw) · (arc - br₀) = 0. Clearly, arc - br₀ ≠ 0 since var = v and wbr₀ = w. Thus 0 ≠ arc - br₀ ∈ U(α, β)⊥. Let

Ω₁ = ∩ₐ,β∈D×D supp(U(α, β)⊥) and Ω₂ = ∩ₐ,β∈D×D (α, β) ≠ 0 supp(U(α, β)⊥).

Recall j(x) = v⊥ and j(y) = w⊥. If x ∉ Ω₁ then U(α, β)⊥ ∩ v⊥ for some β ≠ 0 in D. For every f ∈ U(α, β)⊥, uf = 0. Consequently, wf = 0 also since β = 0 and hence Vf = 0. This means that U(α, β)⊥ = 0, a contradiction. Thus x ∈ Ω₁. A similar argument shows that y ∈ Ω₂. We now claim that Ω₁ ∩ Ω₂ = ∅. For if z ∈ Ω₁ ∩ Ω₂ then j(z) = v₀⊥ for some v₀ ∈ V and v₀ = v' + αv + βw for some v' ∈ Ker ar ∩ Ker br₀ and α, β ∈ D. It follows that v₀⊥ ≥ U(α, β)⊥ and z ∉ Ω₁ ∩ Ω₂, a contradiction. Therefore, X(R) is Hausdorff.

2.7 Corollary. If R is a primitive ring with 1, then X(R) is a Hausdorff space if and only if either R is a division ring or R is a finite ring.

Proof. If R is a finite ring or a division ring then certainly X(R) is a finite T₁-space. Hence it is a Hausdorff space. Conversely, if X(R) is a Hausdorff space, then by 2.5, R is either a division ring or a dense ring of linear transformations of finite rank of a vector space over a finite field. In the latter case, since 1 ∈ R, R must be the complete ring of linear transformations of a finite dimensional vector space over a finite field. Thus, R is a finite ring.

2.8 Example. Let Z be the ring of integers and let V be the set of finite sequences over Z/(2). Then V becomes an ℤ₀-dimensional vector space over Z/(2). Let R be the ring of linear transformations on V and S be the ideal of linear transformations of finite rank. Then R/S is a simple ring with 1 (refer to [2, Theorem 1, p. 93]). Hence by 2.5, X(R) is not a Hausdorff space. However, X(R) is a reducible space by 2.4 and X(S) is a Hausdorff space by 2.6.
2.9 Example. Let R be the ring of infinite row finite matrices of the following form:

$$\begin{pmatrix}
A_n & * \\
0 & 0 \\
0 &
\end{pmatrix}$$

where A_n is an $n \times n$ matrix over $\mathbb{Z}/(2)$ for some n. Then R is a dense ring of the vector space of sequences over $\mathbb{Z}/(2)$. If S is the socle of R then R/S is a radical ring.

3. Finite dimensional maximal regular right ideal space of a primitive ring.

If X is a topological space, then the combinatorial dimension of X, $\dim X$, is the supremum of the positive integer n such that there is a strictly ascending chain of nonempty closed irreducible subsets of X, $\emptyset \neq F_0 \subsetneq F_1 \subsetneq \cdots \subsetneq F_n$ (refer to [4, p. 156]).

3.1 Theorem. If R is a dense ring of linear transformations of a vector space M over an infinite division ring D, then $\dim M = n + 1$ if and only if $\dim X(R) = n$.

Proof. Assume $\dim M = n + 1$ and let $\{m_1, m_2, \ldots, m_{n+1}\}$ be a basis for the vector space M. Then $\bigcap_{i=1}^{n+1} m_i = \{0\}$. Hence $X(R) = b(\bigcap_{i=1}^{n+1} m_i) \supsetneq b(\bigcap_{i=2}^{n+1} m_i) \supsetneq \cdots \supsetneq b(m_1 \cap m_2) \supsetneq b(m_1) = \{m_1\}$. Since R is a simple artinian ring, if $x \in X(R)$ then $v(x) = v^k$ for some vector $v \neq 0$ in M. Hence if $x \in b(\bigcap_{i=1}^{n+1} m_i)$, then $v \in \sum_{i=1}^{n+1} Dm_i$. Therefore, if $b(\bigcap_{i=1}^{n+1} m_i)$ were reducible, then, as in the case of proof of 2.4, the vector space $\sum_{i=1}^{n+1} Dm_i$ would be a finite union of proper subspaces and D would be a finite field by 2.1. Thus $\dim X(R) \geq n$. Now let $F_{n+1} \supsetneq F_n \supsetneq \cdots \supsetneq F_1 \supsetneq F_0 = \emptyset$ be a strictly descending closed irreducible subsets of $X(R)$. Let $A_i = j(F_i)$, $0 \leq i \leq n + 1$. Then $A_n+1 \supsetneq A_n \supsetneq \cdots \supsetneq A_1 \supsetneq A_0$ is a strictly ascending chain of right ideals of R since $b(j(F_i)) = F_i$ for each i by 1.8. Since R is a simple artinian ring, every right ideal of R is a direct summand of R. Hence $A_0 = K_1 \oplus A_1$, $A_1 = K_2 \oplus A_2$, \cdots, $A_n = K_{n+1} \oplus A_{n+1}$ for some nonzero right ideals K_1, K_2, \cdots, K_{n+1}, and $R = K_0 \oplus K_1 \oplus \cdots \oplus K_{n+1} \oplus A_{n+1}$ for some right ideal K_0 of R. This means that R is a direct sum of at least $n + 2$ minimal right ideals. This is impossible since R is a direct sum of $n + 1$ minimal right ideals and the number of summands is unique. Conversely, let us assume now that $\dim X(R) = n$. Let B be a basis for the vector space M. If B is a finite set then, by the first part of the theorem, the number of elements in B must be $n + 1$. So suppose that $\dim M = \infty$. Let $Y = \{m^1 \mid m \in M, m \neq 0\}$. Then Y is a nonempty subspace of $X(R)$ and $\dim Y \leq \dim X(R) = n$ by [4, 9.3, p. 156].
Let $b_1, b_2, \ldots, b_k, \ldots$ be distinct elements in B. Then the chain of subsets $b(b_1^k) \cap Y \subseteq b(b_1^k \cap b_2^k) \cap Y \subseteq \ldots \subseteq b(\bigcap_{i=1}^k b_i^k) \cap Y \subseteq \ldots$ is strictly ascending. Since D is an infinite division ring, each $b(\bigcap_{i=1}^k b_i^k) \cap Y$ is irreducible in Y as in the case of proof of 2.4. Hence dim Y is not finite and this is a contradiction.

3.2 Theorem. Let R be a primitive ring. Then R is right artinian if and only if $X(R)$ satisfies the descending chain condition on the subbasic open sets.

Proof. If R is right artinian, then R is a simple artinian ring. Hence if A is a right ideal of R, then $j(b(A)) = A$. Hence if $\supp(A_1) \supseteq \supp(A_2) \supseteq \ldots \supseteq \supp(A_n) \supseteq \ldots$ is a chain of subbasic open sets for some right ideals $A_1, A_2, \ldots, A_n, \ldots$ then $b(A_1) \subseteq b(A_2) \subseteq \ldots \subseteq b(A_n) \subseteq \ldots$ and $j(b(A_1)) = A_1 \supseteq j(b(A_2)) = A_2 \supseteq \ldots \supseteq j(b(A_n)) = A_n \supseteq \ldots$. Thus the chain must terminate. Conversely, assume that the descending chain condition holds on the subbasic open sets. Let V be a faithful simple right R-module. To prove that R is artinian, it suffices to show that V is a finite dimensional vector space. So suppose the dimension V is infinite. Then there exist infinite independent vectors v_1, v_2, \ldots such that $\supp(v_1^k) \supseteq \supp(v_1^k \cap v_2^l) \ldots$. This is a contradiction.

Acknowledgement. We are deeply indebted to the referee for many invaluable suggestions for the preparation of this paper.

REFERENCES

DEPARTMENT OF MATHEMATICS, NORTH CAROLINA STATE UNIVERSITY, RALEIGH, NORTH CAROLINA 27607