Maximal regular right ideal space of a primitive ring

Authors:
Kwangil Koh and Jiang Luh

Journal:
Trans. Amer. Math. Soc. **170** (1972), 269-277

MSC:
Primary 16A20

DOI:
https://doi.org/10.1090/S0002-9947-1972-0304413-5

MathSciNet review:
0304413

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $R$ is a ring, let $X(R)$ be the set of maximal regular right ideals of $R$ and $\mathfrak {L}(R)$ be the lattice of right ideals. For each $A \in \mathfrak {L}(R)$, define $\operatorname {supp} (A) = \{ I \in X(R)|A \nsubseteq I\}$. We give a topology to $X(R)$ by taking $\{ \operatorname {supp} (A)|A \in \mathfrak {L}(R)\}$ as a subbase. Let $R$ be a right primitive ring. Then $X(R)$ is the union of two proper closed sets if and only if $R$ is isomorphic to a dense ring with nonzero socle of linear transformations of a vector space of dimension two or more over a finite field. $X(R)$ is a Hausdorff space if and only if either $R$ is a division ring or $R$ modulo its socle is a radical ring and $R$ is isomorphic to a dense ring of linear transformations of a vector space of dimension two or more over a finite field.

- A. BiaĆynicki-Birula, J. Browkin, and A. Schinzel,
*On the representation of fields as finite unions of subfields*, Colloq. Math.**7**(1959), 31â32. MR**111739**, DOI https://doi.org/10.4064/cm-7-1-31-32 - Nathan Jacobson,
*Structure of rings*, Revised edition, American Mathematical Society Colloquium Publications, Vol. 37, American Mathematical Society, Providence, R.I., 1964. MR**0222106** - R. S. Pierce,
*Modules over commutative regular rings*, Memoirs of the American Mathematical Society, No. 70, American Mathematical Society, Providence, R.I., 1967. MR**0217056** - R. G. Swan,
*Algebraic $K$-theory*, Lecture Notes in Mathematics, No. 76, Springer-Verlag, Berlin-New York, 1968. MR**0245634**

Retrieve articles in *Transactions of the American Mathematical Society*
with MSC:
16A20

Retrieve articles in all journals with MSC: 16A20

Additional Information

Keywords:
Maximal regular right ideals,
socle,
reducible spaces,
Hausdorff spaces,
support

Article copyright:
© Copyright 1972
American Mathematical Society